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1. Nikulin surfaces in low genus
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I Nikulin surface of genus g : a complex K3 surface S endowed with

◦ a1 polarization C of genus g ,

◦ a line bundle M := OS(M) so that 2M ∼ N

◦ and N is the disjoint union of 8 copies of P1.

I The irreducible components of the moduli space have dimension 11
and are essentially characterized by < C,M >. 2

I Further assumption in this talk:

< C,M >= 0.

This defines an integral component of the moduli, unique for

g ≡ 0 mod 4.

1
big and nef

2
Cfr. Garbagnati-Sarti, Sarti-van Geemen and then Huybrechts book
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I We have 2M ∼ N1 + · · ·+ N8 with Nk = P1 and NiNj = −2δij .

I N := N1 + · · ·+ N8 defines the double covering π′ : S̃ ′ → S
branched on N and the commutative diagram

S̃ ′
ν′−−−−→ S̃

π′

y π

y
S

ν−−−−→ S

ν is the contraction of N 3 and S̃ is a minimal K3 surface.

I π is the quotient map of a symplectic involution ι : S̃ → S̃ branched
exactly on the even set of nodes

{o1 := ν(N1) , . . . , o8 := ν(N8)} = Sing S .

3
Let Ei = π′−1(Ni ), i = 1 . . . 8, then Ei is an exceptional line on the smooth surface S̃′. It turns out that

ν′ is the contraction of E1 + · · · + E8
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I Notations:

◦ Fg := moduli of genus g K3 surfaces (S , C),

◦ FN
g := moduli of genus g Nikulin surfaces (S , C,M).

I For a general [S , C,M] ∈ FN
g one has

PicS = Z[C] ⊥ LS ,

where LS is generated by M,OS(N1), . . . ,OS(N8). 4

I With a slight abuse we can say that

FN
g ⊂ Fg .

4
As an abstract lattice LS is known as the Nikulin lattice.
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I An intermediate divisor in Fg :

Dg := { [S , C] ∈ Fg / ∃ M ∈ PicS , <M, C >= 0}

so that <M,M >= −4. We assume C ⊗M−1 big and nef.

I For a general [S , C] ∈ Dg the element M is unique and

Pic S = Z[C] ⊥ Z[M].

I Clearly:
FN

g ⊂ Dg ⊂ Fg .
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I In low genus FN
g sits in a fascinating system of relations to other

geometric families. We present some work in progress about. 5

I For g ≤ 10 it seems interesting to study Mukai constructions for a
Nikulin surface.

I The unirationality of FN
g is known for g ≤ 7 6 We prove here:

5
Part of it jointly with A. Garbagnati

6
Farkas-Verra to appear in Advances of Math.
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I Theorem (1)

FN
8 is rational. 7

I Theorem (2)

D8 is birational to P14 × P6.

I P6 denotes the moduli space of six unordered points of P2.

I Its rationality is an unknown, apparently difficult, problem.

I A natural question: is FN
g rational for g ≤ 7?

7
— to appear in K3 surfaces and their moduli Proceedings Schirmonnikoog 2014
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I There is a beautiful geometry behind theorems 1 and 2 we want to
discuss during this talk.

I Further notations for [S , C,M] ∈ Dg , g ≥ 3:

◦ H := C(−M) and A := C(−2M), moreover

◦ C ∈ |C|, H ∈ |H|, A ∈ |A|, 8.

I For a general [S , C,M] ∈ FN
g the map fC × fH defines an embedding

S ⊂ Pg × Pg−2.

I For a general [S , C,M] ∈ Dg , C and H are very ample as soon as
their genus is ≥ 3.

8
provided these linear systems are not empty.

9 / 47



I For a general [S , C,M] ∈ FN
g we have:

◦ fH(S) = S and fH(Ni ) is a line.

◦ fC(S) = S and fC(Ni ) is a node.

I The next characterization of FN
g in Dg is useful: 9

Proposition

Let [S , C,M] ∈ Dg , the following conditions are equivalent:

◦ [S, C,M] ∈ FN
g ,

◦ ∃ N1 . . .N8 disjoint copies of P1 / HNi = 1 , ANi = 2.

9
g ≡ 0 mod 4
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I Finally we fix the projective models

S ⊂ Pg−2

defined by H and

I

S ⊂ Pg

defined by C.

I We also recall that C is Prym canonically embedded by H. 10

I We start with the geometry of FN
g for g ≤ 7.

10
ηC := OC (−M) is non trivial of 2-torsion in Pic C so that OC (H) ∼= ωC ⊗ ηC .
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I As a kind of nice examples we consider the cases g = 4, 6, 7.

I g = 4. Let B ⊂ P4 be a rational normal quartic and V := Sec B.
One has a quasi-étale double covering

π : Ṽ → V

branched on B = Sing V 11. One can show that:

I Proposition

A general model S of genus 4 is a quadratic section of V . 12

I It follows that FN
4
∼= |OV (2)|/Aut B which is rational.

11
Ṽ := { (x, l) ∈ B × V / x ∈ l ∩ B}

12
In particular Sing S = Sing V ∩ S = B ∩ S .
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I g = 6. Let Q ⊂ P4 be a smooth quadric, the tangential quadratic
complex of Q is

W := {l ∈ G (2, 5) / l is tangent to Q}.

I W is endowed with the quasi-étale double covering

π : W̃ →W

branched on SingW = the Veronese embedding of P3 in
G (1, 4) ⊂ P9. One can show that:

I Proposition
A general model S of genus 6 is a linear section of W .

I It follows that FN
6 is unirational.
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I g = 7. Consider the model S ⊂ P5 defined by H: S is the base
locus of a net of quadrics.

I Choosing N1 . . .N7 it turns out that C ∼ Co := R + N1 + · · ·+ N7,
with R a rational normal quintic.

I Co is the union of R and seven bisecant lines to it.

I Starting from a curve Co , this curve uniquely defines a net of
quadrics and hence its base locus S .

I Moreover S turns out to be a general Nikulin surface of genus 7
endowed with an eighth line disjoint from R.

I Proposition

The moduli space F̃N
7 of curves Co is rational and has a map of degree 8

f : F̃N
7 → FN

7 .
13

13
Actually F̃N

7 is the moduli of fourtuples (S, C,M,Ni ) such that (S, C,M) is a Nikulin surface of genus 7

and Ni is one of the lines in S ⊂ P5. The rationality of FN
7 is not clear.
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2. Nikulin surfaces of genus 8 and rational normal sextics
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I Let g = 8 and [S , C] ∈ D8 be general, we have an embedding

S ⊂ P6

with hyperplane sections H ∼ C −M of genus 7.

I For g = 8 we have (C − 2M)2 = −2 and (C − 2M)H = 6.

I Proposition
Let A ∈ |C − 2M| and [S , C,M] ∈ FN

8 general. Then A is a smooth,
integral rational normal sextic spanning P6. 14

I Proposition
For a general [S , C,M] ∈ FN

8 the lines N1 . . .N8 are disjoint bisecant
lines to A contained in S.

14
Then the same is true by semicontinuity on D8.
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I The Mukai-Brill-Noether theory is known for [X ,OX (1)] ∈ F6
15:

◦ CASE 1:
◦ If a smooth H ∈ |OX (1)| is not trigonal nor biregular to a

plane quintic, then H is generated by quadrics.

◦ ∃! H-stable rank 2 vector bundle E on X such that:

(i) det E ∼= OX (1);

(ii) h0(E) = 5 and hi (E) = 0 for i ≥ 1;

(iii) det : ∧2H0(E)→ H0(OP6(1)) is surjective.

15
For simplicity we assume that OX (1) is very ample
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I Let G (1, 4) ⊂ P9 := P ∧2 H0(E)∗ be the Plücker embedding of the
Grassmannian of lines of PH0(E)∗. Then the diagram

P6 δ−−−−→ P9x x
X

fE−−−−→ G (1, 4),

commutes, where δ := det∗, the vertical maps are the inclusions
and fE is the embedding defined by E .
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I Up to obvious identifications we can say that

X ⊂ T := P6 ∩ G (1, 4) ⊂ P9.

I Mukai theory in genus 6 says also that:

(iv) X is a quadratic section of T ,

I Since X is a smooth quadratic section of T , T is an integral
threefold linear section of G (1, 4) with isolated singularities.

I Actually T is a smooth Del Pezzo threefold of degree 5 if X is
sufficiently general.
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I ◦ CASE 2:
◦ Assume H is either trigonal or biregular to a plane quintic.

Then H has Clifford index 1 and the following property holds
true:

◦ there exists an integral curve D ⊂ X such that either DH = 3
and D2 = 0 or DH = 5 and D2 = 2.

I A general genus 8 Nikulin surface occurs in case (1), not in (2).

I Proposition

Let S ⊂ P6 be a general Nikulin surface of genus 8 embedded by fH.
Then S is a quadratic section of a threefold T as above. 16

16
PROOF Pic S is the orthogonal sum of rank 9 ZL ⊕ LS , where LS is the Nikulin lattice generated by

OS (M),OS (N1) . . .OS (N8). A standard computation we omit, shows that no divisor D exists such that D2 = 0

and DH = 3 or D2 = 2 and DH = 5. This excludes case (2).
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I With A and S ⊂ T = P6 ∩ G (1, 4) ⊂ P9 as above, qnd under the
previous generality assumptions, we study the restriction

EA := E ⊗ OA

of the Mukai bundle E and discuss the possible cases. Of course we
have EA = OP1 (m)⊕OP1 (n) with m + n = 6.

Proposition

One has m, n ≥ 0 so that h0(EA) = 8 and h1(EA) = 0.

17

17
PROOF Consider the commutative diagram

∧2H0(E)
∧2r−−−−−−→ ∧2H0(EA)

det

y detA

y
H0(det E)

r−−−−−−→ H0(det EA)

The restriction r is an isomorphism and det is surjective. This implies m, n ≥ 0: otherwise detA would be zero.
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I Now we consider the tautological map

uA : PA → P7 := PH0(EA)∗

of the ruled surface PA := PE∗A.

I Then
R := uA(PA).

is a rational normal scroll of degree 6.

I The next standard exact sequence will be crucial:

0→ E(−A)→ E → EA → 0.
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I The associated long exact sequence is the following:

0→ H0(E)→ H0(EA)
δA→ H1(E(−A))→ 0.

I In particular one has

◦ h0(E) = 5,
◦ h0(EA) = 8,
◦ h1(E(−A)) = 3. 18

I The coboundary map ∂A : H0(EA)→ H1(E(−A)) defines a plane

PA := PIm ∂∗A ⊂ P7.

18
PROOF Since E(−A) is H-stable and H(H − 2A) < 0, it follows h0(E(−A)) = 0. Furthermore we know

that hi (E) = 0 for i ≥ 1 and we have h1(EA) = 0 because m, n ≥ 0. This implies the statement.
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I Let P4 := PH0(E)∗. Dualizing the sequence and projectivizing we
define the linear projection of center PA:

αA : P7 → P4 := PH0(E)∗.

I Furthermore we have the commutative diagram

P7 αA−−−−→ P4

uA

x uS

x
PE∗A

i−−−−→ PE∗

where the vertical arrows are the tautological maps.

I The constructions holds true for a general element of D8, not only
in the Nikulin case.

I We will profit of this construction in the next section, where the
very special feature of the projection αA will be described.
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I Let G (1, 7) be the Grassmannian of lines of PH0(EA)∗. Then

l −→ αA(l), l ∈ G (1, 7)

defines a linear projection

λA : G (1, 7)→ G (1, 4).

I The next diagram is commutative:

G (1, 7)
λA−−−−→ G (1, 4)

fEA

x fE

x
A

i−−−−→ S
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Theorem
For a general Nikulin surface of genus 8 one has

EA = OP1 (3)⊕OP1 (3).

19

19
PROOF We have EA = O

P1 (m)⊕O
P1 (n) with 0 ≤ m ≤ n ≤ 6 and m + n = 6. It suffices to show that

R is not a cone and that no rational section of degree 1 or 2 is contained in it. This implies m = 3. To this
purpose consider the projected scroll R′ = αA(R). Since A is embedded in G(1, 4) as an integral sextic curve, the

degree of R′ is six. For any integral variety Y ⊂ P4 we denote by σY the variety in G(1, 4) parametrizing the
lines intersecting Y . Let us exclude the cases 0 ≤ m ≤ 2. m = 0. Then the scroll R′ is a cone of vertex o and A
is contained in σo . But σo is a linear space of dimension four and A would be a degenerate curve in it, which is
excluded. m = 1. In this case R′ contains a line L intersecting every line of its ruling. Consider σL: it is well

known that σL is a cone of vertex a point l over the Segre embedding P1 × P2 ⊂ P5. Since A ⊂ σL it follows

that σL ⊂ P6 =< A >. Moreover P6 is the linear space tangent to G(1, 4) at the parameter point of L. But
then T = σL: a contradiction. m = 2. We can assume that R′ contains a smooth conic K intersecting all the
lines of the ruling of R′. Let P be the supporting plane of K , then S is contained in the codimension 1 Schubert
cycle σP . This is endowed with a ruling of 4-dimensional smooth quadrics having the dual plane P∗ as the base
locus. Every element of such a ruling is the Plücker embedding of the Grassmannian of the lines contained in a
hyperplane through P. Notice also that Sing σP = P∗. Then, since S is a smooth complete intersection of three
hyperplane sections of G(1, 4) and of a quadric section, it follows that S ∩ P∗ = ∅. But then this ruling of

quadrics of σP cuts on S a base pont free pencil |D| such that D2 = 0 and DH = 4. This is excluded again by a
standard computation in the Picard lattice of a general Nikulin surface.
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3. Nikulin surfaces of genus 8 and symmetric cubic threefolds
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I A symmetric cubic threefold is a cubic hypersurface

V := {det(aij) = 0} ⊂ P4,

where aij = aji are linear forms.

I We assume dim < aij >= 6 so that V = Sec B, B a rational normal
quartic curve.

I The family of bisecant lines to B is a 3-Veronese embedding

W ⊂ G (1, 4)

embedded as a congruence of class (3, 6).
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I Since EA is balanced then PE∗A = P1 × P1 and

R := uA(PE∗A) ⊂ P7 = PH0(EA)∗

is the image of |OP1×P1 (1, 3)|.
I R is a rational normal sextic scroll: we fix it once at all.

I Restricting to R the top arrow of the previous diagram

P7 αA−−−−→ P4

uA

x uS

x
PE∗A

i−−−−→ PE∗
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I We obtain a linear projection

α : R → P4.

I α is a finite morphism of degree 1 onto its image. Let

Z ⊂ R

be the subscheme of points where α is not an embedding. Then

`(Z ) = 12

by double point formula.

I In other words R has six apparent ordinary double points if α is a
sufficiently general projection in P4.
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I This is actually not the case for simple geometric reasons:

I A has 8 bisecant lines N1 . . .N8 ⊂ S ⊂ G (1, 4) in the Nikulin case,

I α(R) is the projection in P4 of the universal line over A:

PA := {(x , l) ∈ P4 × G (1, 4) / x ∈ l},

I Ni parametrizes a pencil of lines in P4 of center say ni ,

I the fibre of PA at Ni ∩ A is the disjoint union of two lines of Ni .

I Hence:
Singα(R) ⊇ {n1 . . . n8} !
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I Theorem

◦ Singα(R) is a rational normal quartic B,

◦ α(R) is a fake K3 surface of genus 4:

◦ let V = Sec B then

α(R) = Q ∩ V , Q ∈ |IB/P4 (2)|.
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I So far A is defined by a special embedding α : P1 → G (1, 4) of
degree 6:

I < A > ∩G (1, 4) = T as for every rational normal sextic,

I but A = W ∩ T , where W = P2 embedded with class (3, 6).

I A special feature: A has a 1-dimensional family

EA := {lines N such that N ⊂ A ∩ G (1, 4)}.
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I More geometry of the special embeddings α : P1 → A ⊂ G (1, 4):

I The family EA is an elliptic curve.20

I A defines a second fake surface of genus 6, namely

SA =
⋃

N, N ∈ EA.

I SA ∈ |IA/T (2)|, actually SingA = A.

20
Naturally embedded as a curve of type (2,2) in B × B.
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I The family of special embeddings α modulo Aut(G (1, 4) is

|IB/V (2)|/Aut B = |OP1[2](2)|/Aut P1

that is a rational surface we will denote by

Σ.

I The considered Nikulin surface S belongs to |IA/T (2)|.

I A general S ′ ∈ |IA/T (2)| is a smooth Nikulin surface.

I Proof: S ′ = Q ′ ∩ T and

Q ′ · SA = 2A + N ′1 + · · ·+ N ′8,

N ′i a bisecant line to A.
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I Let α ∈ P5 := |IB/V (2)|, we denote by α : P1 → G (1, 4) the
corresponding sextic embedding and put A = α(P1):

I From the previous remarks and construction one has a P9-bundle

π : P→ P5 (21)

with fibre at α the linear system of Nikulin surfaces |IA/T (2)|.

I With some more elaboration:

◦ The natural map P/Aut B → FN
8 is birational.

◦ P/Aut B is birational to P9 × Σ.

21
onto a non empty open set of
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I We have sketched the proof that

Theorem
The moduli space of genus 8 Nikulin surfaces is rational.

I A Mukai construction, in some sense, for the model S of a general
Nikulin surface of genus 8 seems also available:

I Consider the rational map

f : T → P9

defined by IA(2). Let T be the birational image of f , possibly:

T = P9 ∩ G (1, 5).

22

22
Work in progress
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I f contracts SA to a copy of the elliptic curve EA spanning a
hyperplane:

I Sing T = EA.

I Which cubic 3-fold is ’naturally’ birational to the Fano 3-fold T? It
should be Sec B.

I One hopes for further progress on Mukai realizations of Nikulin
surfaces for g = 9, 1023

23
Work in progress

38 / 47



4. Rational normal sextics, 6-nodal cubic 3-folds and D8
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I It is time to consider a general [S , C,M] ∈ D8:

I the construction considered for [S , C,M] ∈ FN
8 yelds

A ⊂ S ⊂ T = P6 ∩ G (1, 4) ⊂ P9,

I but this time the commutative diagram

P7 αA−−−−→ P4

uA

x uS

x
PE∗A

i−−−−→ PE∗

I defines a generic linear projection

α : R → P4

of center the plane PA.24

24
As above R = uA(PE∗A ) and α := αA/R.
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I We have:

◦ Singα(R) = {o1 . . . o6}, six independent points 25,

◦ A has exactly six bisecant lines contained in G (1, 4).

I Modulo s6 it is not restrictive to fix the set

O := {o1 . . . o6}.

I R := {sextic rational scrolls R / SingR = O}

I We have:

Theorem
D8 is birational to a P9-bundle over R/s6. 26

25
In the unique open PGL(5)-orbit

26
More precisely over a no empty open set of R/s6 with fibre |IA/T (2)| at R = αA(R).
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I What is R/s6?

I The answer relies on the studies of a person of the same countryside
of Alberto Collino:

I

I Corrado Segre (Saluzzo 1863 - Torino 1924) described singular
cubic 3-folds in a famous Memoir.
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I Here we come to meet six nodal cubic 3-folds V and their geometry
described by Corrado Segre, we can assume

V ∈ |I2
O(3)|.

For this geometry see I. Dolgachev’s contribution to the volume

From classical to modern Algebraic Geometry

Corrado Segre’s Mastership and Legacy

I To appear in Trends in History of Science, Birkhauser.
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I I := |I2
O(3)| is a linear system of dimension 4.

I It defines a not dominant rational map f : P4 → I∗.

I f (P4) = Σ := Segre’s 10-nodal cubic.

I general fibre of f : a rational normal quartic.
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I The Fano surface F (V ) splits as follows. Let l ∈ F (V ):

f (l) = cubic curve in f (V ) = smooth cubic surface

I f (l) is either a plane or a skew cubic in f (V ).

I Let f (l) be skew: |f (l)| contracts a sixer e of lines.

I F (V ) = f (V ) ∪ |f (l)| ∪ |5f (l)− 2e|.

I This configures a Schlaefli double six: |f (l)| contracts e and its
conjugate sixer is contracted by |5f (l)− e|.
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I Concerning us and R/s6 it is easy to show that:

◦ Let R ∈ R be general ten ∃ ! V ∈ I := |I2
O(3)| / V ⊃ R.

◦ The assignement R −→ V defines a dominant map

p : R/s6 → I/s6.

I It is well known that I/s6 is rational and actually the weighted
projective space of dimension four

P[1, 2, 3, 4, 5]

I It is the moduli space of Schlaefli double sixers via F (V ) and the
assignement V → f (V ).

I It admits an obvious double cover

π : P6 → P[1, 2, 3, 4, 5]

where P6 is the moduli space of six points in P2.
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I The ruling of R defines a curve in F (V ).

I This is a conic in |f (l)| ∪ |5f (l)− 2e|, hence

{R ∈ R/R ⊂ V } = P5 V P5

I It follows that R/s6 is birationally a P5-bundle on P6: 27

D8
∼= (P6 × P5)× P9.

27
l ⊂ R is a line of the ruling. The two P5’s are the spaces of conics of |f (l)| and |5f − 2e|.
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