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1. Nikulin surfaces in low genus
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> Nikulin surface of genus g: a complex K3 surface S endowed with
o al polarization C of genus g,
o a line bundle M := Os(M) so that 2M ~ N
o and N is the disjoint union of 8 copies of P!.

» The irreducible components of the moduli space have dimension 11
and are essentially characterized by < C, M >. 2

» Further assumption in this talk:
<C,M>=0.
This defines an integral component of the moduli, unique for

g=0 mod 4.

1big and nef
2Cfr. Garbagnati-Sarti, Sarti-van Geemen and then Huybrechts book
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» We have 2M ~ Ny + - - - + Ng with Ny = P! and N;N; = —25;;.

» N:= N +---+ Ng defines the double covering 7’ : &' — S
branched on N and the commutative diagram

/
v,

2L

s

:‘\
%

0 +— Un

s X

v is the contraction of N 3 and S is a minimal K3 surface.

> 7 is the quotient map of a symplectic involution ¢ : S — § branched
exactly on the even set of nodes

{o1 :=v(Ny), ..., og:=v(Ng)} = SingS.

Let E; = ﬂlfl(N;), i=1...8, then E; is an exceptional line on the smooth surface 5’ It turns out that
v’ is the contraction of £y + - - - + Eg
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> Notations:
o Fg := moduli of genus g K3 surfaces (S,C),

o F) := moduli of genus g Nikulin surfaces (S,C, M).
» For a general [S,C, M] € }'év one has
PicS=7Z[C] L Ls,

where Ls is generated by M, Os(Ny),...,0s(Ng). *
» With a slight abuse we can say that

FY c Fy.

4 . . o .
As an abstract lattice Lg is known as the Nikulin lattice.
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> An intermediate divisor in Fg:
Dy :={[S,Cle Fg /I M€ PicS, <M,C>=0}

so that < M, M >= —4. We assume C ® M~ big and nef.
> For a general [S,C] € D, the element M is unique and

Pic S = Z[C] L ZIM].

> Clearly:
FY CDg C Fy.
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> In low genus ]-"é’,\’ sits in a fascinating system of relations to other
geometric families. We present some work in progress about. °

» For g < 10 it seems interesting to study Mukai constructions for a
Nikulin surface.

> The unirationality of fé',v is known for g < 7 © We prove here:

5Part of it jointly with A. Garbagnati

Farkas-Verra to appear in Advances of Math.
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» Theorem (1)
FN is rational. 7

» Theorem (2)
Dg is birational to P x Ps.

» Pg denotes the moduli space of six unordered points of P2.

> Its rationality is an unknown, apparently difficult, problem.

» A natural question: is fé',\’ rational for g < 77

T to appear in K3 surfaces and their moduli Proceedings Schirmonnikoog 2014
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There is a beautiful geometry behind theorems 1 and 2 we want to
discuss during this talk.

Further notations for [S,C, M] € D,, g > 3:
o H :=C(—M) and A :=C(—2M), moreover
o CelC|, He |H| Ac|A|SL

For a general [S,C, M] € ]-"év the map f¢ X fz defines an embedding
SCPExpPe2

For a general [S,C, M] € D, C and H are very ample as soon as
their genus is > 3.

8 . .
provided these linear systems are not empty.
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> For a general [S,C, M] € F} we have:
o fy(S) =S and fy(N;) is a line.
o fo(S) =S and fo(N;) is a node.
> The next characterization of ' in D, is useful: °
Proposition

Let [S,C, M] € Dy, the following conditions are equivalent:
o [S8,C,M] e FV,

o 3 Ny...Ns disjoint copies of P! / HN; =1, AN; = 2.

g =0 mod 4
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Finally we fix the projective models
Scpe?
defined by H and
Scpe

defined by C.
We also recall that C is Prym canonically embedded by 7. 1©

We start with the geometry of FJ for g < 7.

1

OTIC := O¢(—M) is non trivial of 2-torsion in Pic C so that O¢(H) &~ w¢ ® n¢-
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» As a kind of nice examples we consider the cases g = 4,6,7.

» g =4. Let B C P* be a rational normal quartic and V := Sec B.
One has a quasi-étale double covering

VoV
branched on B = Sing V !. One can show that:

» Proposition
A general model S of genus 4 is a quadratic section of V. '?

> It follows that 7N = |Oy(2)|/Aut B which is rational.

11
12

V:i={(x/) € BxV/x€INB}
In particular SingS = SingV NS =BNS.
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> g=06. Let Q C P* be a smooth quadric, the tangential quadratic
complex of Q is

W = {l € G(2,5) / | is tangent to Q}.
» W is endowed with the quasi-étale double covering
W= W

branched on Sing W = the Veronese embedding of P3 in
G(1,4) C P°. One can show that:

» Proposition
A general model S of genus 6 is a linear section of W

> It follows that FY is unirational.
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» g = 7. Consider the model S C P® defined by H: S is the base
locus of a net of quadrics.

» Choosing N ... N7 it turns out that C ~ C, ;== R+ Ny + - -- + N5,
with R a rational normal quintic.

» (C, is the union of R and seven bisecant lines to it.

» Starting from a curve C,, this curve uniquely defines a net of
quadrics and hence its base locus S.

» Moreover S turns out to be a general Nikulin surface of genus 7
endowed with an eighth line disjoint from R.

» Proposition

The moduli space ]37’\’ of curves C, is rational and has a map of degree 8

oy — Fps

13Actually f"7N is the moduli of fourtuples (S, C, M, N;) such that (S, C, M) is a Nikulin surface of genus 7
and N; is one of the lines in S C P°. The rationality of ]-_7N is not clear.
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2. Nikulin surfaces of genus 8 and rational normal sextics
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> Let g =8 and [S,C] € Dg be general, we have an embedding
ScPS
with hyperplane sections H ~ C — M of genus 7.
» For g = 8 we have (C —2M)? = —2 and (C — 2M)H = 6.
» Proposition

Let A€ |C—2M| and [S,C, M] € FL general. Then A is a smooth,
integral rational normal sextic spanning P®. 14

» Proposition
For a general [S,C, M] € FJl the lines Ny ... Ng are disjoint bisecant
lines to A contained in S.

14
Then the same is true by semicontinuity on Dg.
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» The Mukai-Brill-Noether theory is known for [X, Ox(1)] € Fg:

o CASE 1:
o If a smooth H € |Ox(1)| is not trigonal nor biregular to a
plane quintic, then H is generated by quadrics.

o I H-stable rank 2 vector bundle £ on X such that:
(i) det &= 0Ox(1);
(i) h°(&) =5 and h'(£) =0 fori>1;
(iii) det : A2H(E) — H°(Ops(1)) is surjective.

1
5For simplicity we assume that Ox (1) is very ample
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> Let G(1,4) C P? := P A2 HY(&)* be the Pliicker embedding of the
Grassmannian of lines of PH%(E)*. Then the diagram

ps —° , p°

I I

X — 5 6(1,4),

commutes, where § := det*, the vertical maps are the inclusions
and f¢ is the embedding defined by £.

18 /47



Up to obvious identifications we can say that

XCT:=P°nG(1,4) CP°.
Mukai theory in genus 6 says also that:

(iv) X is a quadratic section of T,

Since X is a smooth quadratic section of T, T is an integral
threefold linear section of G(1,4) with isolated singularities.

Actually T is a smooth Del Pezzo threefold of degree 5 if X is
sufficiently general.
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» o CASE 2:
o Assume H is either trigonal or biregular to a plane quintic.
Then H has Clifford index 1 and the following property holds

true:
o there exists an integral curve D C X such that either DH =3

and D2 =0o0or DH =5 and D? = 2.

> A general genus 8 Nikulin surface occurs in case (1), not in (2).

» Proposition

Let S C P be a general Nikulin surface of genus 8 embedded by fy,.
Then S is a quadratic section of a threefold T as above. '°

16PROOF Pic S is the orthogonal sum of rank 9 ZL @ LLg, where LLg is the Nikulin lattice generated by
Og(M), Og(Ny) . ..Og(Ng). A standard computation we omit, shows that no divisor D exists such that D? = 0

and DH = 3 or D? = 2 and DH = 5. This excludes case (2).
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» With Aand S C T =P°N G(1,4) C P as above, gnd under the
previous generality assumptions, we study the restriction

Ea=ER0,

of the Mukai bundle £ and discuss the possible cases. Of course we
have €4 = Op1(m) & Op:1(n) with m+ n = 6.
Proposition

One has m,n > 0 so that h°(E4) = 8 and h1(E4) = 0.
17

17PROOF Consider the commutative diagram

2
AZHO(E) — D0 5 A2HO(g,)

detJv dety l

HO(det £) —L—— HO(det £,)

The restriction r is an isomorphism and det is surjective. This implies m, n > 0u otherwise det4 would be zero.
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> Now we consider the tautological map
up:Pa— P :=PH(En)"

of the ruled surface P4 := P&,

» Then
R = uA(IPA).

is a rational normal scroll of degree 6.

> The next standard exact sequence will be crucial:

0=>E8(-A) =& —Ex—0.



» The associated long exact sequence is the following:

0 — HO(E) — H(Ea) 24 HL(E(—A)) — 0.

» In particular one has

o hO(g) =5,
o h%(E4) =8,
o h'(E(—A)) =3. 18

» The coboundary map 94 : H%(Ea) — HY(E(—A)) defines a plane

P4 :=PIm 0} C P".

18PROOF Since £(—A) is H-stable and H(H — 2A) < 0, it follows h%(E£(—A)) = 0. Furthermore we know
that h(£) = 0 for i > 1 and we have h'(£4) = 0 because m, n > 0. This implies the“statement.
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» Let P* := PH°(&)*. Dualizing the sequence and projectivizing we
define the linear projection of center Pj4:

aa: P — P*:= PHO(&)".
» Furthermore we have the commutative diagram
pr 2 pt
UAT UST
PE; —— pe*
where the vertical arrows are the tautological maps.

» The constructions holds true for a general element of Dg, not only
in the Nikulin case.

» We will profit of this construction in the next section, where the
very special feature of the projection as will be described.
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» Let G(1,7) be the Grassmannian of lines of PH?(E4)*. Then
I — aa(l), 1€ G(1,7)
defines a linear projection
A G(1,7) — G(1,4).
> The next diagram is commutative:

G(1,7) —— G(1,4)

ol
A
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Theorem
For a general Nikulin surface of genus 8 one has

Ea= Op1(3) (&) Op1(3).

19

19PROOF We have £4 = Op1(m) @ Opy (n) with 0 < m < n < 6 and m + n = 6. It suffices to show that
R is not a cone and that no rational section of degree 1 or 2 is contained in it. This implies m = 3. To this
purpose consider the projected scroll R’ = a4(R). Since A is embedded in G(1, 4) as an integral sextic curve, the
degree of R’ is six. For any integral variety Y C P* we denote by oy the variety in G(1, 4) parametrizing the
lines intersecting Y. Let us exclude the cases 0 < m < 2. m = 0. Then the scroll R’ is a cone of vertex o and A
is contained in 0,. But o, is a linear space of dimension four and A would be a degenerate curve in it, which is
excluded. m = 1. In this case R’ contains a line L intersecting every line of its ruling. Consider oy it is well
known that o is a cone of vertex a point / over the Segre embedding Pl x P2 C P%. Since A C o it follows
that oy C P% =< A >. Moreover P® is the linear space tangent to G(1, 4) at the parameter point of L. But
then T = o, : a contradiction. m = 2. We can assume that R’ contains a smooth conic K intersecting all the
lines of the ruling of R’. Let P be the supporting plane of K, then S is contained in the codimension 1 Schubert
cycle op. This is endowed with a ruling of 4-dimensional smooth quadrics having the dual plane P* as the base
locus. Every element of such a ruling is the Pliicker embedding of the Grassmannian of the lines contained in a
hyperplane through P. Notice also that Sing op = P*. Then, since S is a smooth complete intersection of three
hyperplane sections of G(1, 4) and of a quadric section, it follows that S M P* = (). But then this ruling of
quadrics of op cuts on S a base pont free pencil |D| such that D? = 0 and DH = 4. This is excluded again by a
standard computation in the Picard lattice of a general Nikulin surface.
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3. Nikulin surfaces of genus 8 and symmetric cubic threefolds
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> A symmetric cubic threefold is a cubic hypersurface
V := {det(a;) = 0} C P*,
where aj; = aj; are linear forms.

» We assume dim < aj >= 6 so that V = Sec B, B a rational normal
quartic curve.

> The family of bisecant lines to B is a 3-Veronese embedding
W C G(1,4)

embedded as a congruence of class (3, 6).
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> Since &4 is balanced then P& = P! x P! and
R := ua(PE;) C P = PH(Ex)*
is the image of |Op1yp1(1,3)].
> R is a rational normal sextic scroll: we fix it once at all.

> Restricting to R the top arrow of the previous diagram

pr . pt

UAT usT

PE; — s PE*
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> We obtain a linear projection
a:R— P
> « is a finite morphism of degree 1 onto its image. Let
ZCR
be the subscheme of points where « is not an embedding. Then
0Z)=12
by double point formula.

> In other words R has six apparent ordinary double points if « is a
sufficiently general projection in P%.
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This is actually not the case for simple geometric reasons:

A has 8 bisecant lines Ny ... Ng C S C G(1,4) in the Nikulin case,

a(R) is the projection in P* of the universal line over A:
Pa:={(x,/) e P*x G(1,4) / x € I},

N; parametrizes a pencil of lines in P* of center say n;,
the fibre of P4 at N; N A is the disjoint union of two lines of ;.

Hence:
Singa(R) D {n1...ng} !
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» Theorem
o Sing «(R) is a rational normal quartic B,
o aR) is a fake K3 surface of genus 4:
o let V = Sec B then

Ot(R) = Qﬂ V, Q S |IB/P4(2)|'
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So far A is defined by a special embedding o : P! — G(1,4) of
degree 6:

< A>NG(1,4) =T as for every rational normal sextic,
but A= W N T, where W = P? embedded with class (3,6).

A special feature: A has a 1-dimensional family

E4 := {lines N such that N C AN G(1,4)}.
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More geometry of the special embeddings o : P* — A C G(1,4):

The family E, is an elliptic curve.?°

A defines a second fake surface of genus 6, namely

Sa=|JN, N € Ea

Sa € |Za;7(2)], actually Sing, = A.

20Naturally embedded as a curve of type (2,2) in B X B.
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> The family of special embeddings o modulo Aut(G(1,4) is
1Zg/v(2)|/Aut B = |Opipy(2)|/Aut P
that is a rational surface we will denote by

X,

> The considered Nikulin surface S belongs to |Z,7(2)].

> A general S’ € |Z,7(2)| is a smooth Nikulin surface.
» Proof: S"=Q'N T and

Q -Sa=2A+Nj+---+ N,

N! a bisecant line to A.
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Let v € P® := |Zg,\/(2)|, we denote by o : P! — G(1,4) the
corresponding sextic embedding and put A = a(P?!):

From the previous remarks and construction one has a P°-bundle
T:P=P> (?Y
with fibre at « the linear system of Nikulin surfaces [Z4,7(2)|.

With some more elaboration:

o The natural map P/Aut B — F}' is birational.
o P/Aut B is birational to P° x ¥.

1
onto a non empty open set of
36 /47



» We have sketched the proof that

Theorem

The moduli space of genus 8 Nikulin surfaces is rational.

> A Mukai construction, in some sense, for the model S of a general
Nikulin surface of genus 8 seems also available:

> Consider the rational map
f: T—P°
defined by Za(2). Let T be the birational image of f, possibly:

T =P°NG(1,5).

22

22
Work in progress
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> f contracts S4 to a copy of the elliptic curve E, spanning a
hyperplane:

» Sing T = E,.

» Which cubic 3-fold is 'naturally’ birational to the Fano 3-fold T? It
should be Sec B.

» One hopes for further progress on Mukai realizations of Nikulin
surfaces for g = 9,10%

23 Work in progress
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4. Rational normal sextics, 6-nodal cubic 3-folds and Dg
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It is time to consider a general [S,C, M] € Dg:

v

the construction considered for [S,C, M] € FY yelds

ACScT=P°nG(1,4) CP?

v

but this time the commutative diagram

P’ @A p4

UAT UST

PE; —— PE*

v

defines a generic linear projection
a:R—P*

of center the plane P4.%*

24As above R = up(PER) and o := an/R.
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> We have:
o Singa(R) = {o1...0s}, six independent points %,

o A has exactly six bisecant lines contained in G(1,4).

v

Modulo sg it is not restrictive to fix the set

0= {01...06}.

v

R := {sextic rational scrolls R / SingR = O}

» We have:

Theorem
Dy is birational to a P°-bundle over R /s¢. %

25In the unique open PGL(5)-orbit
26More precisely over a no empty open set of R /s with fibre |Z4,(2)| at R = &a(R).
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> What is R/s¢?

» The answer relies on the studies of a person of the same countryside
of Alberto Collino:

> Corrado Segre (Saluzzo 1863 - Torino 1924) described singular
cubic 3-folds in a famous Memoir.
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Here we come to meet six nodal cubic 3-folds V' and their geometry
described by Corrado Segre, we can assume

Ve |Z3(3)).
For this geometry see |. Dolgachev’s contribution to the volume

From classical to modern Algebraic Geometry

Corrado Segre’s Mastership and Legacy

To appear in Trends in History of Science, Birkhauser.
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I :=|Z2(3)| is a linear system of dimension 4.

It defines a not dominant rational map f : P* — I*.

f(P*) = ¥ := Segre's 10-nodal cubic.

general fibre of f: a rational normal quartic.
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The Fano surface F(V) splits as follows. Let / € F(V):

f(I) = cubic curve in f(V) = smooth cubic surface
f(I) is either a plane or a skew cubic in f(V).
Let 7(/) be skew: |f(/)| contracts a sixer e of lines.
F(V)=f(V)UIf(l)] U |5f(]) — 2e].

This configures a Schlaefli double six: |f(/)| contracts e and its
conjugate sixer is contracted by |5f(/) — e|.
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Concerning us and R /sg it is easy to show that:
o Let R € R be general ten 3! V € 1:=|Z3(3)| / VD R.

o The assignement R — V defines a dominant map
p:R/se — 1/se.

It is well known that I/sg is rational and actually the weighted
projective space of dimension four

P[1,2,3,4,5]

It is the moduli space of Schlaefli double sixers via F(V) and the
assignement V — f(V).

It admits an obvious double cover
7w Ps = P[1,2,3,4,5]

where Pg is the moduli space of six points in P2.
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» The ruling of R defines a curve in F(V).

> This is a conic in |f(/)] U |5f(/) — 2e|, hence

{RER/RC V}=P5V PS

» It follows that R/sg is birationally a P5-bundle on Pg: 7

Dg = (Ps x P®) x P°.

27/ C Riis a line of the ruling. The two P%’s are the spaces of conics of |f(1)| and{5f — 2e].

47 /47



