Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2011/2012 AL210 - Algebra 2 Soluzioni II Esonero

Esercizio 1. Un elemento $a \neq 0$ contenuto in un anello A si dice nilpotente se esiste un intero n > 1 tale che $a^n = 0$. Provare che se A è commutativo e unitario, $a \in A$ è un elemento invertibile e $b \in A$ è un elemento nilpotente, allora a + b è invertibile

Soluzione: DA INSERIRE

Esercizio 2. Nell'anello degli interi di Gauss $\mathbb{Z}[i]$ si consideri l'ideale I := (5+i, 1+3i).

- (a) Stabilire se I è un ideale principale e, in tal caso, trovare un suo generatore.
- (b) Stabilire se I è un ideale primo oppure no.

Soluzione:

(a) L'ideale I è principale perché $\mathbb{Z}[i]$ è un dominio Euclideo dunque anche un PID. Un generatore di I è dato dal massimo comune divisore di 5+i e 1+3i. (Per questioni di norma, $N(5+i)=26=13\cdot 2$ e $N(1+3i)=10=5\cdot 2$, le uniche possibilità per il MCD sono 1 e 1-i, facendo il prodotto per $(1-i)^{-1}$ si trova che (1-i) divide entrambi).

Con l'algoritmo Euclideo, posto $\overline{y} := 1 - 3i$:

$$(5+i)\overline{y} = 8 - 14i$$

$$8 = 0 \cdot 10 + 8 = 1 \cdot 10 - 2$$

$$-14 = -1 \cdot 10 - 4 = -2 \cdot 10 + 6.$$

Scegliendo q = (1 - i) si ha r = (5 + i) - (1 - i)(1 + 3i) = 1 - i.

Dividendo (1+3i) per (1-i) risulta:

$$(1+3i)(1+i) = -2+4i$$
$$-2 = -1 \cdot 2 + 0$$
$$4 = 2 \cdot 2 + 0$$

Da cui (1+3i) = (-1+2i)(1-i) + 0. Ne segue che I = (1-i).

(b) L'ideale I è primo perché è generato da un elemento di norma 2 che è un numero primo.

Esercizio 3. Sia n un intero positivo e $\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}$. Sia data la seguente applicazione:

$$\varphi_n: \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}_9, \quad a + b\sqrt{-5} \mapsto a + 5bn \pmod{9}.$$

- (a) (4 pt) Stabilire per quali $n \pmod{9}$, φ_n è un omomorfismo di anelli.
- (b) (2 pt) Scegliere un n per il quale φ_n è un omomorfismo di anelli e trovare il nucleo e l'immagine di tale φ_n .
- (c) (5 pt) Utilizzando lo stesso n del punto (b), trovare la controimmagine $\varphi_n^{-1}(6\mathbb{Z}_9)$ e, utilizzando il Teorema Fondamentale di Omomorfismo, descrivere il quoziente $\mathbb{Z}[\sqrt{-5}]/\varphi_n^{-1}(6\mathbb{Z}_9)$.

Dire, infine, se $\varphi_n^{-1}(6\mathbb{Z}_9)$ è un ideale primo di $\mathbb{Z}[\sqrt{-5}]$.

Soluzione:

(a) Si verifica facilmente che $\varphi_n(x+y) = \varphi_n(x) + \varphi_n(y)$, per ogni $n \ge 0$. Il rpoblema si pone con il prodotto. Solo per i valori $n = 4, 5 \pmod{9}$ is ha che $\varphi_n(xy) = \varphi_n(x)\varphi_n(y)$.

Infatti, siano $x = a + b\sqrt{-5}$ e $y = c + d\sqrt{-5}$. Allora:

$$xy = (ac - 5bd) + (ad + bc)\sqrt{-5} \Rightarrow \varphi_n(xy) = (ac - 5bd) + 5(ad + bc)n;$$

$$\varphi_n(x)\varphi_n(y) = (a+5bn)(c+5dn) = ac + 25bdn^2 + 5(ad+bc)n.$$

Uguagliando le due formule (mod 9), si ottiene:

$$-5bd \equiv 25bdn^2 \pmod{9} \Rightarrow -5 \equiv 7n^2 \pmod{9} \Rightarrow n^2 \equiv 4 \pmod{9}.$$

Per cui, $n \equiv 4, 5 \pmod{9}$.

(b) Scegliamo n=4. Allora $Im(\varphi)=\mathbb{Z}_9$ e

$$ker(\varphi) = \{a + b\sqrt{-5}; a + 20b = 0 \pmod{9}\} = \{a + b\sqrt{-5}; a \equiv 7b \pmod{9}\}.$$

(c) Si ha che $6\mathbb{Z}_9 = \{\bar{0}, \bar{3}, \bar{6}\} \cong \mathbb{Z}_3$. Inoltre φ è suriettiva, quindi $\mathbb{Z}[\sqrt{-5}]/ker(\varphi) \cong \mathbb{Z}_9/6\mathbb{Z}_9$ e questo ultimo è isomorfo a \mathbb{Z}_3 . Ma $ker(\varphi) = \varphi_n^{-1}(6\mathbb{Z}_9) = \{a + b\sqrt{-5}; a + 20b = 0, 3, 6 \pmod{9}\} = \{a + b\sqrt{-5}; a \equiv 7b, 7b + 3, 7b + 6 \pmod{9}\}$. Ne segue che $\mathbb{Z}[\sqrt{-5}]/\varphi_n^{-1}(6\mathbb{Z}_9) \cong \mathbb{Z}_3$ e quindi $\varphi_n^{-1}(6\mathbb{Z}_9)$ è primo e massimale. Poiché $\mathbb{Z}_9/6\mathbb{Z}_9 \cong \mathbb{Z}_3$, l'applicazione

Esercizio 4. Sia dato il polinomio irriducibile $f(X) = X^4 + X^3 + X^2 + X + 1 \in \mathbb{Z}_3[X]$. Sia α una radice di f(X) in una estensione di \mathbb{Z}_3 . Costruire un campo di cardinalità 81, $\mathbb{F}_{81} = \mathbb{Z}_3(\alpha)$, e determinare l'inverso di α^2 .

Soluzione: Per la costruzione del campo visionare i libri di testo o gli appunti presi in classe. L'inverso di α^2 è esattamente α^3 .

Esercizio 5. Sia
$$I = \{ f(X) \in \mathbb{R}[X] \mid f(\sqrt{2}) = 0 \text{ e } f(\sqrt{3}) = 0 \}.$$

(a) (2 pt) Provare che I è ideale di $\mathbb{R}[X]$ e descrivere un suo sistema di generatori.

(b) (2 pt) Provare che ${\cal I}$ non è ideale primo.

${\bf Soluzione:}$

- (a) $I = ((X \sqrt{2}) \cdot (X \sqrt{3})).$
- (b) I non è primo perché $(X-\sqrt{2})\cdot(X-\sqrt{3})\in I,$ ma $(X-\sqrt{2})\notin I$ e $(X-\sqrt{3})\notin I.$