Università degli Studi Roma Tre Anno Accademico 2008/2009 GE3 (Topologia) Appello X - Lunedì 7 Settembre 2009

1. Sia $X=\left\{\frac{1}{n}:\ n\in\mathbb{Z}\backslash\{0\}\right\}\cup\{0\}$ con la topologia di sottospazio di \mathbb{R} . Sia $f:\mathbb{Z}\longrightarrow X$ definita da

$$f(n) = \begin{cases} \frac{1}{n} & \text{se } n \neq 0\\ 0 & \text{se } n = 0 \end{cases}$$

Supponendo che $\mathbb Z$ abbia la topologia discreta, verificare a) se f è continua, b) se f è un omeomorfismo.

- 2. Sia \mathbb{Z}^2 l'insieme costituito dai punti di \mathbb{R}^2 a coordinate intere e sia \mathcal{U} la famiglia costituita dai sottoinsiemi $U \subset \mathbb{R}^2$ il cui complementare e' contenuto in \mathbb{Z}^2 .
 - (a) Dimostrare che \mathcal{U} è base di un'unica topologia \mathcal{T} .
 - (b) Verificare se \mathbb{R}^2 con la topologia \mathcal{T} è uno spazio T_1 oppure T_2 .
 - (c) Verificare se \mathbb{R}^2 con la topologia \mathcal{T} è uno spazio compatto oppure connesso.
 - (d) Si determini la chiusura, rispetto alla topologia \mathcal{T} , di ciascuno dei sottoinsiemi seguenti: $A = \{(0,0)\}, \ B = \{(1,-1/2)\}, \ C = \{(t,t) \in \mathbb{R}^2 : t \in \mathbb{R}\}.$
- 3. Sia $X = S^2_- \cup S^1_+ \subset \mathbb{R}^3$ dove $S^2_- = \{(x,y,z) \in S^2 : z \leq 0\}$ è la 2-semisfera inferiore chiusa, e $S^1_+ = \{(x,y,z) \in S^2 : y = 0, z \geq 0\}$. Dopo aver verificato che X è connesso per archi, calcolarne il gruppo fondamentale.
- 4. Dimostrare che un sottoinsieme chiuso e discreto di uno spazio compatto è finito.

SOLUZIONI

- 1) f è continua perché \mathbb{Z} ha la topologia discreta e quindi ogni suo s.i. è aperto, in paricolare lo sono quelli della forma $f^{-1}(A)$, con $A \subset X$ aperto. f è biunivoca ma non è un omeomorfismo perché non è aperta. Infatti $\{0\} = f(\{0\})$ non è un s.i. aperto di X perché ogni aperto di \mathbb{R} che contiene 0 contiene altri punti di X. Quindi $\{0\}$ è un s.i. aperto di \mathbb{Z} la cui immagine non è aperta.
 - 2) a) Per la Prop. 2.3 basta verificare che
 - \mathcal{U} è un ricoprimento: ovvio perché $\mathbb{R}^2 \in \mathcal{U}$.
- Se $U, V \in \mathcal{U}$ allora $U \cap V$ è unione di elementi di \mathcal{U} . Supponiamo $U = \mathbb{R}^2 \setminus A$, $V = \mathbb{R}^2 \setminus B$, con $A, B \subset \mathbb{Z}^2$. Allora $U \cap V = (\mathbb{R}^2 \setminus A) \cap (R^2 \setminus B) = \mathbb{R}^2 \setminus (A \cup B) \in \mathcal{U}$ perché $A \cup B \subset \mathbb{Z}^2$.
- b) $(\mathbb{R}^2, \mathcal{T})$ non è T_1 perché i punti $a \notin \mathbb{Z}^2$ non sono chiusi. Ciò segue dal fatto che un tale punto a appartiene a tutti gli aperti non vuoti della topologia, e quindi il suo complementare non è aperto. Non essendo T_1 , lo spazio non è neanche T_2 .
- c) $(\mathbb{R}^2, \mathcal{T})$ non è compatto. Infatti il ricoprimento aperto: $\{\mathbb{R}^2 \setminus (\mathbb{Z}^2 \setminus \{x\}) : x \in \mathbb{Z}^2\}$ è costituito da infiniti insiemi e non ammette un sottoricoprimento finito, perché non ammette sottoricoprimenti propri.
- $(\mathbb{R}^2, \mathcal{T})$ è connesso. Infatti gli aperti di \mathcal{T} sono precisamente gli elementi della base \mathcal{U} , ed il loro complementare è un s.i. di \mathbb{Z}^2 , che non appartiene a \mathcal{U} , a meno che non sia \emptyset . Pertanto non esistono s.i. propri aperti e chiusi.
- d) A è chiuso perché è un s.i. di \mathbb{Z}^2 , quindi $A = \overline{A}$. Invece B e C non sono contenuti in alcun s.i. di \mathbb{Z}^2 e quindi l'unico chiuso che contiene B oppure C è \mathbb{R}^2 . Quindi $\overline{B} = \mathbb{R}^2 = \overline{C}$.
- 3) S_{-}^2 è omeomorfo ad un disco chiuso, che è connesso per archi. S_{+}^1 è omeomorfo ad un intervallo chiuso e limitato, anch'esso connesso per archi. Inoltre $S_{-}^2 \cap S_{+}^1 \neq \emptyset$ perché $(0,1,0) \in S_{-}^2 \cap S_{+}^1$, e quindi X è connesso per archi.

Il sottospazio S_{-}^2 è contraibile, quindi è omotopicamente equivalente ad uno spazio costituito da un solo punto $\{\star\}$. Quindi X è omotopicamente equivalente allo spazio quoziente ottenuto contraendo S_{-}^2 a $\{\star\}$, che è omeomorfo ad S^1 . Quindi $\pi_1(X) \cong \pi_1(S^1) \cong \mathbb{Z}$.

4) Se $Z \subset X$, con X compatto e Z chiuso in X e discreto, allora Z è a sua volta compatto. Essendo discreto possiede il ricoprimento aperto $\mathcal{U} = \{\{z\} : z \in Z\}$, che non possiede sottoricoprimenti propri. Pertanto \mathcal{U} dev'essere finito, e ciò avviene se e solo se Z è finito.