Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220

A.A. 2012-2013 - Docente: Prof. Edoardo Sernesi Tutori: Sara Lamboglia e Maria Chiara Timpone

> TUTORATO 8 (29 APRILE 2013) CONNESSIONE & CONNESSIONE PER ARCHI

- 1. Discutere la connessione per archi dei seguenti sottospazi di \mathbb{R}^2 :
 - (i) $S := \mathbb{R}^2 \setminus \{(q, q) : q \in \mathbb{Q}\};$
 - (ii) $M := \{(x, y) \in \mathbb{R}^2 : x \notin \mathbb{Q} \text{ oppure } y \notin \mathbb{Q}\};$
 - (iii) $L := \{(x, y) \in \mathbb{R}^2 : x(y 1)(y 2) = 0\};$
 - (iv) $T := \{(x, y) \in \mathbb{R}^2 : (y 1)(y 2) = 0\}.$

Solutione:

(i) S è connesso per archi.

Siano $S_1 := \{(x,y) : x \ge y\} \setminus \{(q,q) : q \in \mathbb{Q}\}$ e $S_2 := \{(x,y) : x \le y\} \setminus \{(q,q) : q \in \mathbb{Q}\}$ allora $S = S_1 \cup S_2$ e $S_1 \cap S_2 := \{(r,r) : r \in \mathbb{R} \setminus \mathbb{Q}\} \ne \emptyset$. Per dimostrare che S è connesso per archi sarà quindi sufficiente provare che S_1 è connesso per archi $(S_2 \approx S_1)$.

Facciamo vedere che S_1 è connesso per poligonali (denoteremo con $\prod (P_1, \ldots, P_n)$ la poligonale di vertici P_1, \ldots, P_n). Siano $P = (x, y), P' = (x', y') \in S_1$, supponiamo senza perdita di generalità che $x \leq x'$ e $y \leq y'$. Allora posto Q := (x, y') si ha $\prod (P, Q, P') \subseteq S_1$.

(ii) M è connesso per archi.

Per dimostrate l'asserto verifichiamo che M è connesso per poligonali. Siano $P=(x,y), Q=(x',y')\in M$. Supponiamo che $x\notin \mathbb{Q}$; consideriamo allora due casi:

- $-y' \notin \mathbb{Q}$. Posto R := (x, y') si ha che $\prod (P, R, Q) \subseteq M$
- $-y' \in \mathbb{Q} \Rightarrow x' \notin \mathbb{Q}$. Sia $\beta \in \mathbb{R} \setminus \mathbb{Q}$; ponendo $R := (x, \beta), H := (x', \beta)$ si ha $\prod (P, R, H, Q) \subseteq M$.

Si ragiona analogamente se $x \in \mathbb{Q} \ (\Rightarrow y \notin \mathbb{Q})$.

In ogni caso esiste una poligonale che congiunge P e Q, da cui segue che M è connesso per archi.

(iii) L è connesso per archi.

Infatti L è unione di due spazi A e B connessi per archi la cui intersezione è non vuota. Si considerino $A = \{(x,y) \in \mathbb{R}^2 : x(y-1)\}$, l'unione dell'asse delle y con la retta orizzontale y=1, e $B=\{(x,y)\in \mathbb{R}^2 : x(y-2)=0\}$, l'unione dell'asse delle y con la retta orizzontale y=2. A e B sono connessi per archi e $A\cap B=\{(x,y)\in \mathbb{R}^2 : x=0\}\neq \emptyset$ allora $A\cup B$ è connesso per archi.

(iv) T non è connesso per archi.

Basta osservare che il sottospazio T non è connesso in quanto i due chiusi $\{(x,y) \in \mathbb{R}^2 : (y-1) = 0\}$ e $\{(x,y) \in \mathbb{R}^2 : (y-2) = 0\}$ rappresentano una sconnessione di T.

2. Dimostrare che il prodotto di due spazi connessi per archi è connesso per archi.

Solutione:

Siano X e Y due spazi topologici connessi per archi e siano $p_1 = (x_1, y_1)$ e $p_2 = (x_2, y_2)$ due punti di $X \times Y$. Mostriamo che esiste un arco $\alpha : I \to X \times Y$ tale che $\alpha(0) = p_1$ e $\alpha(1) = p_2$.

 $x_1, x_2 \in X$; allora, essendo X connesso per archi esiste un'applicazione continua $\alpha_X : I \to X$ tale che $\alpha_X(0) = x_1$ e $\alpha_X(1) = x_2$.

Allo stesso modo esisterà un' applicazione continua $\alpha_Y: I \to Y$ tale che $\alpha_Y(0) = y_1$ e $\alpha_Y(1) = y_2$. Consideriamo allora $\alpha: I \to X \times Y$ definita nel modo seguente

$$\alpha(t) = (\alpha_X(t), \alpha_Y(t));$$

 α è chiaramente continua, poichè lo sono α_X, α_Y , e inoltre $\alpha(0) = (\alpha_X(0), \alpha_Y(0)) = (x_1, y_1) = p_1$ e $\alpha(1) = (\alpha_X(1), \alpha_Y(1)) = (x_2, y_2) = p_2$. α è dunque l'arco cercato tra p_1 e p_2 .

3. Una formica torre si muove nel piano solamente lungo le rette di equazione x=a e y=b. Siano p e q due punti di un aperto connesso $A \subset \mathbb{R}^2$. Dimostrare che la formica torre può muoversi da p a q senza uscire da A.

Solutione:

In primo luogo osserviamo che essendo A un aperto connesso è anche connesso per archi. Presi due punti $P=(x_0,y_0)$ e $Q\in A$ esiste un arco γ contenuto in A che li connette. Per dimostrare l'asserto facciamo vedere che esiste una spezzata composta da segmenti orizzontali e verticali che connette i due punti e tutta contenuta in A. Sia D_1 un disco chiuso di centro P interamente contenuto in A (D_1 esiste perché A è aperto) e consideriamo $\gamma|_{D_1}$ e il punto $P_1:=\gamma\cap\partial(D_1)$ di coordinate (x_1,y_1) . Senza perdita di generalità possiamo supporre che $x_0< x_1$ e $y_0>y_1$. Se $\gamma|_{D_1}$ è un segmento orizzontale o verticale allora sia $S_1:=\gamma|_{D_1}$. Altrimenti poniamo $S_1:=\{(x,y_0):x_0\leq x\leq x_1\}\cup\{(x_1,y):y_0\leq y\leq y_1\}$. Poiché γ è compatto, dopo un numero finito di passi si avrà che $P_n=Q$ e dunque $S=S_1\cup\ldots\cup S_n=\prod(P,P_1,\ldots,P_n=Q)$ è una poligonale semplice e non chiusa tutta contenuta in A.

- 4. (a) Si provi che ogni omeomorfismo $f:I\to I$ dell'intervallo euclideo reale chiuso I=[0,1] su se stesso, possiede almeno un punto fisso.
 - (b) Si faccia vedere che l'enunciato (a) non è più vero, se si considerano gli omeomorfismi dell'intervallo euclideo reale aperto (0,1) su se stesso: in altri termini, si dia un esempio di omeomorfismo $g:(0,1)\to(0,1)$ tale che nessun punto $x\in(0,1)$ sia fisso.

Solutione:

- (a) Osserviamo innanzitutto che deve essere f(0) = 0 e f(1) = 1 oppure f(0) = 1 e f(1) = 0: infatti I\0 e I\1 sono connessi, da cui, essendo f continua, f(I\0) = I\f(0) e f(I\1) = I\f(1) devono essere ancora connessi; ma gli unici punti che non sconnettono I sono 0 e 1. Nel primo caso ci sono almeno due punti fissi; nel secondo caso, si consideri l'applicazione continua h: I → R definita da h(x) = f(x) x. Poiché risulta h(0) = 1 e h(1) = -1, il teorema degli zeri permette di concludere che esiste almeno un punto x₀ dell'intervallo I, tale che h(x₀) = 0. Per costruzione x₀ è punto fisso per f.
- (b) $f(x) = x^2$ nell'intervallo (0,1) non ha punti fissi (la funzione $h(x) = x^2 x$ non si annulla nell'intervallo (0,1)); è inoltre semplice vedere che si tratta di un omeomorfismo (con inversa $f^{-1}(x) = \sqrt{x}$).
- 5. Verificare che gli insiemi $\mathbf{GL}_n(\mathbb{R})$ e $\mathbf{O}_n(\mathbb{R})$ sono sconnessi.

Solutione:

Consideriamo l'applicazione determinante:

$$det: M_n(\mathbb{R}) \to \mathbb{R}.$$

Siano $U^- := det^{-1}((-\infty,0)) = \{A \in M_n(\mathbb{R}) : \det(A) < 0\}$ e sia $U^+ := det^{-1}((0,+\infty)) = \{A \in M_n(\mathbb{R}) : \det(A) > 0\}$. Dalla continuità di det segue che gli insiemi U^- e U^+ sono aperti; essi sono inoltre non vuoti e disgiunti. Poichè ovviamente $U^- \cup U^+ = \{A \in M_n(\mathbb{R}) : \det(A) \neq 0\} = \mathbf{GL}_n(\mathbb{R})$ si conclude che $\mathbf{GL}_n(\mathbb{R})$ è sconnesso.

Per dimostrare che anche $\mathbf{O}_n(\mathbb{R})$ è sconnesso, basta verificare che $\mathbf{O}_n(\mathbb{R}) \cap U^-$ e $\mathbf{O}_n(\mathbb{R}) \cap U^+$ realizzano una sconnessione di $\mathbf{O}_n(\mathbb{R})$.

Infatti si ha $\mathbf{O}_n(\mathbb{R}) \cap U^- = \{A \in \mathbf{O}_n(\mathbb{R}) : \det(A) = -1\}$ mentre $\mathbf{O}_n(\mathbb{R}) \cap U^+ = \{A \in \mathbf{O}_n(\mathbb{R}) : \det(A) = 1\}$. Tali insiemi sono ovviamente non vuoti, disgiunti, aperti in $\mathbf{O}_n(\mathbb{R})$ e la loro unione coincide con $\mathbf{O}_n(\mathbb{R})$.

6. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione continua e biunivoca tale che $f(S^{n-1}) = S^{n-1}$. Dimostrare che $f(D_1(0)) = D_1(0)$.

Solutione:

Consideriamo $(S^{n-1})^c = D_1(0) \cup A$, con $A = \{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| > 1\}$. Essendo f biunivoca e tale che $f(S^{n-1}) = S^{n-1}$ si ha $f((S^{n-1})^c) = (S^{n-1})^c$ o equivalentemente $f(D_1(0) \cup A) = f(D_1(0)) \cup f(A) = f(D_1(0)) \cup f(A)$

 $D_1(0) \cup A$. Inoltre poichè f è continua e $D_1(0)$ e A sono le due componenti connesse di $(S^{n-1})^c$, si deve avere che $f(D_1(0)) = D_1(0)$ e f(A) = A, oppure $f(D_1(0)) = A$ e $f(A) = D_1(0)$. Supponiamo per assurdo che sia $f(D_1(0)) = A$ e $f(A) = D_1(0)$. Allora si ha:

$$f(\overline{D_1(0)}) = f(D_1(0) \cup S^{n-1}) = f(D_1(0)) \cup f(S^{n-1}) = A \cup S^{n-1} = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| \ge 1 \}$$

ma questo è assurdo in quando $\overline{D_1(0)}$ è compatto (perchè chiuso e limitato), mentre la sua immagine attraverso l'applicazione continua f è illimitata e pertanto non compatta.

7. Dimostrare che uno spazio topologico X connesso e localmente connesso per archi è connesso per archi.

Solutione:

Richiamiamo la seguente definizione:

Definizione: Uno spazio topologico X si dice localmente connesso per archi in un punto $p \in X$ se possiede un sistema fondamentale di intorni connessi per archi di p, o, equivalentemente, se per ogni intorno U di p esiste un intorno $V \subset U$ di p connesso per archi.

X si dice localmente connesso per archi se è localmente connesso per archi in ogni suo punto.

Sia p un punto qualsiasi di X e sia $C_a(p)$ la componente connessa per archi di p. Allora, essendo X connesso e $C_a(p) \neq \emptyset$ ($p \in C_a(p)$), sarà sufficiente mostrare che $C_a(p)$ è contemporaneamente aperto e chiuso in X.

- $C_a(p)$ è aperto in X: Sia $q \in C_a(p)$; per la locale connessione di X esiste un intorno U di q connesso per archi $\Rightarrow U \subseteq C_a(q) = C_a(p) \Rightarrow C_a(p)$ è aperto.
- $C_a(p)$ è chiuso in X: Mostriamo che $\overline{C_a(p)} = C_a(p)$: sia $q \in \overline{C_a(p)}$ e sia U un intorno connesso per archi di q (U esiste per l'ipotesi di locale connessione per archi). Chiaramente $C_a(p) \cap U \neq \emptyset$. Sia dunque $s \in C_a(p) \cap U$. Allora, poichè $q, s \in U$, esiste un arco $\alpha : I \to U$ tale che $\alpha(0) = s$ e $\alpha(1) = q$. Introducendo quindi la relazione d'equivalenza ε tale che

$$x \in y \Leftrightarrow \exists \alpha : I \to X$$
 continua tale che $\alpha(0) = x \in \alpha(1) = y$

si ha $q \in s$. Inoltre, essendo $s \in C_a(p)$, si ha $s \in p \Rightarrow per la transitività, <math>q \in p \Leftrightarrow q \in C_a(p)$.

8. Sia X uno spazio topologico. Una funzione $f: X \to Y$ si dice localmente costante se $\forall x \in X$ esiste un intorno aperto U di x tale che f(y) = f(x) per ogni $y \in U$. Provare che se X è connesso e $f: X \to \mathbb{R}$ è localmente costante allora f è costante.

Solutione:

Sarà sufficiente dimostrare che $f^{-1}(f(x))$ è sia aperto che chiuso; infatti, $f^{-1}(f(x)) \neq \emptyset$ e X connesso implicano $f^{-1}(f(x)) = X$.

- $f^{-1}(f(x))$ è aperto: Sia $z \in f^{-1}(f(x))$ allora f(z) = f(x) ed essendo f localmente costante esiste un intorno aperto U di z tale che $f(u) = f(z) \ \forall u \in U$; dunque f(u) = f(x) per ogni $u \in U$ da cui segue $U \subset f^{-1}(f(x)) \Rightarrow f^{-1}(f(x))$ è aperto.
- $f^{-1}(f(x))$ è chiuso: Facciamo vedere che $X \setminus f^{-1}(f(x))$ è aperto. Sia $z \in f^{-1}(f(x))$ allora $f(z) \neq f(x)$ ed esiste un intorno aperto V di z tale che f(u) = f(z) per ogni $v \in V \Rightarrow V \subset X \setminus f^{-1}(f(x))$ e dunque $X \setminus f^{-1}(f(x))$ è aperto.
- 9. Sia C_n la circonferenza di centro $(\frac{1}{n},0)$ e raggio $\frac{1}{n}$ (tutte le circonferenze C_n passano per l'origine). Si mostri che $X = \bigcup_n C_n$ è connesso (questo spazio si chiama *orecchino hawaiano*). E' connesso per archi?

Soluzione:

Osserviamo che le circonferenze C_n sono connesse per archi in quanto quozienti di spazi connessi per archi $(C_n \approx \frac{[0,\frac{1}{n}]}{\sim_n} \text{ con } x \sim_n y$ se e solo se x=y oppure x=0 e $y=\frac{1}{n}$ o viceversa). Lo spazio X è dunque connesso per archi (e quindi connesso) perché è unione di spazi connessi per archi aventi in comune il punto (0,0).

10. Dimostrare che \mathbb{Q} e $X = \{\frac{1}{n}\}_{n \in \mathbb{N}} \cup \{0\}$ non sono omeomorfi, pur essendo entrambi numerabili e totalmente sconnessi.

Soluzione:

I due spazi non sono omeomorfi perchè X è compatto mentre $\mathbb Q$ non lo è. Infatti, $\mathbb Q$ non è compatto in quanto si possono trovare successioni che non ammettono sottosuccessioni convergenti. Basta considerare una successione x_n che converge ad un numero irrazionale r; in tal caso ogni sottosuccessione di x_n tenderà ad r e dunque non convergerà in $\mathbb Q$.

Dimostriamo ora la compattezza di X. Dato $\{U_i\}_{i\in I}$ un ricoprimento aperto di X esisterà un i tale che $0\in U_i$. Prendiamo la successione $x_n=\frac{1}{n}$, essa converge a 0 e dunque per ogni intorno aperto V che contiene 0 esiste \overline{n} per cui $\forall n\geq \overline{n}$ si ha che $x_n\in V$. Abbiamo quindi che esiste \tilde{n} per cui $\forall n\geq \tilde{n}$ $x_n\in U_i$ e quindi possiamo prendere come sottoricoprimento finito $U_i\cup\{U_j:x_k\in U_j\;\exists 1\leq k\leq \tilde{n}\}$.