Tutorato 4

Notazione: dati $z_0 \in \mathbb{C}$ e $r \in \mathbb{R}^+$, $D(z_0, r) := \{z \in \mathbb{C} \ t.c. \ |z - z_0| < r\}$ e $S(z_0, r) := \partial D(z_0, r) = \{z \in \mathbb{C} \ t.c. \ |z - z_0| = r\}$.

- 1. Calcolare i seguenti integrali lungo la curva specificata:
 - (a) $\int_{\gamma} |z|^2 dz$, dove γ è il perimetro del quadrato di vertici 0, i, 1+i, 1percorso una volta in senso antiorario.
 - (b) $\int_{\gamma} (|z|^3+|z|+\overline{z}^2)dz$, dove γ è la circonferenza S(0,1) percorsa due volte in senso antiorario.
 - (c) $\int_{\gamma} (2|z|^2 + z^2 + \overline{z}^2) dz$, dove $\gamma(t) = t + it^2$, $t \in [0, 1]$.
 - (d) $\int_{\gamma} (Re(z) + \sin(z)) dz$, dove $\gamma(t) = t + i\sin(t)$, $t \in [0, 2\pi]$.
 - (e) $\int_{\gamma} z e^{(z^2)} dz$, dove γ è il segmento tra $i \in -i + 2$.
 - (f) $\int_{\gamma} (\frac{1}{z} + e^z + \sin(z) + \frac{1}{z^9}) dz$, dove γ è la circonferenza S(0,1) percorsa tre volte in senso orario. (g) $\int_{\gamma} \frac{1}{iz} \left(\frac{z + (1/z)}{2}\right)^{100} dz$, dove $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$.

 - (h) $\int_{\gamma} \overline{e^z} dz$ dove γ è il perimetro del quadrato di vertici 0, i, 1+i, 1percorso una volta in senso antiorario.
 - (i) $\int_{\mathbb{R}} e^z dz$ dove γ è il perimetro del quadrato di vertici 0, i, 1+i, 1percorso una volta in senso antiorario.
 - (j) $\int_{\Omega} \frac{z}{z} dz$ dove $\gamma = \partial \Omega$ è il cammino chiuso che racchiude il dominio $\Omega:=\{z\in\mathbb{C}:1<|z|<2,\ Im(z)>0\}$ percorso una volta in senso antiorario (ovvero, muovendosi lungo γ , Ω rimane a sinistra).
- 2. Sia Ω un aperto stellato di \mathbb{C} , ovvero: esiste un punto $z_0 \in \Omega$ t.c. ogni segmento tra z_0 e qualsiasi altro punto di Ω è anch'esso contenuto in Ω . Dimostrare che Ω è semplicemente connesso.
- 3. Sia $\Omega := D(0,a) \overline{D(0,b)}$ con a > b > 0 numeri reali, ovvero Ω è una corona circolare aperta, centrata nell'origine, di raggio maggiore a e raggio minore b. Dimostrare che Ω non è semplicemente connesso.
- 4. Sia $S \subset \mathbb{C}$ il segmento di estremi a,b con $a \leq 0 \leq b$ numeri reali. Dimostrare che $\Omega := \mathbb{C} - S$ non è semplicemente connesso.
- 5. Dire se le seguenti affermazioni sono vere o false, motivando la risposta:
 - (a) Se la serie $\sum_{n=0}^{+\infty}a_nz^n$ converge per z=1 allora converge per ogniz t.c. |z|=1.
 - (b) Sia f olomorfa su \mathbb{C} . Se Re(f(z)) = Im(f(z)) per ogni z, allora f è costante.
 - (c) Sia f analitica su Ω aperto connesso. Se |f| ha un minimo locale allora f è costante.
 - (d) Sia f analitica su \mathbb{C} , non nulla. L'insieme degli zeri di f è contabile (i.e.: finito o numerabile).
 - (e) Sia folomorfa su $\mathbb{C}.$ Se $\int_{\gamma}f=0$ per ogni cammino chiuso γ allora f è la funzione nulla.