Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Francesco Pappalardi Dipartimento di Matematica e Fisica Università Roma Tre

Proto-History (from Wikipedia)

Giulio Carlo, Count Fagnano, and Marquis de Toschi (December 6, 1682 September 26, 1766) was an Italian mathematician. He was probably the first to direct attention to the theory of elliptic integrals. Fagnano was born in Senigallia.

He made his higher studies at the Collegio Clementino in Rome and there won great distinction, except in mathematics, to which his aversion was extreme. Only after his college course he took up the study of mathematics.

Later, without help from any teacher, he mastered mathematics from its foundations.

Some of His Achievements:

- $\pi=2 i \log \frac{1-i}{1+1}$
- Length of Lemniscate

Carlo Fagnano

Collegio Clementino

Lemniscate
$\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)$
$\ell=4 \int_{0}^{a} \frac{a^{2} d r}{\sqrt{a^{4}-r^{4}}}=\frac{a \sqrt{\pi} \Gamma\left(\frac{5}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$

Introduction

History

length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Length of Ellipses

$$
\mathcal{E}: \frac{x^{2}}{4}+\frac{y^{2}}{16}=1
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Length of Ellipses

$$
\mathcal{E}: \frac{x^{2}}{4}+\frac{y^{2}}{16}=1
$$

The length of the arc of a plane

 curve $y=f(x), f:[a, b] \rightarrow \mathbb{R}$ is:$$
\ell=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Length of Ellipses

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Length of Ellipses

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Length of Ellipses

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

$$
u^{2}=t^{3}-4 t^{2}+6 t-3
$$

What are Elliptic Curves?

Reasons to study them

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

What are Elliptic Curves?

Reasons to study them

Elliptic Curves

(1) are curves and finite groups at the same time

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

What are Elliptic Curves?

Reasons to study them

Elliptic Curves

(1) are curves and finite groups at the same time
(2) are non singular projective curves of genus 1

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

What are Elliptic Curves?

Reasons to study them

Elliptic Curves

(1) are curves and finite groups at the same time
(2) are non singular projective curves of genus 1
(3) have important applications in Algorithmic Number Theory and Cryptography

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction

History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

What are Elliptic Curves?

Reasons to study them

Elliptic Curves

(1) are curves and finite groups at the same time
(2) are non singular projective curves of genus 1
(3) have important applications in Algorithmic Number Theory and Cryptography
(4) are the topic of the Birch and Swinnerton-Dyer conjecture (one of the seven Millennium Prize Problems)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction

History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

What are Elliptic Curves?

Reasons to study them

Elliptic Curves

(1) are curves and finite groups at the same time
(2) are non singular projective curves of genus 1
(3) have important applications in Algorithmic Number Theory and Cryptography
(4) are the topic of the Birch and Swinnerton-Dyer conjecture (one of the seven Millennium Prize Problems)
(5) have a group law that is a consequence of the fact that they intersect every line in exactly three points (in the projective plane over \mathbb{C} and counted with multiplicity)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

What are Elliptic Curves?

Reasons to study them

Elliptic Curves

(1) are curves and finite groups at the same time
(2) are non singular projective curves of genus 1
(3) have important applications in Algorithmic Number Theory and Cryptography
(4) are the topic of the Birch and Swinnerton-Dyer conjecture (one of the seven Millennium Prize Problems)
(5) have a group law that is a consequence of the fact that they intersect every line in exactly three points (in the projective plane over \mathbb{C} and counted with multiplicity)
(6) represent a mathematical world in itself ... Each of them does!!

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction

History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Fields of characteristics 0

(1) \mathbb{Q} is the field of rational numbers
(2) \mathbb{R} and \mathbb{C} are the fields of real and complex numbers

Finite fields

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Fields of characteristics 0

(1) \mathbb{Q} is the field of rational numbers
(2) \mathbb{R} and \mathbb{C} are the fields of real and complex numbers
(3) $K \subset \mathbb{C}, \operatorname{dim}_{\mathbb{Q}} K<\infty$ is a number field

Finite fields

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Fields of characteristics 0

(1) \mathbb{Q} is the field of rational numbers
(2) \mathbb{R} and \mathbb{C} are the fields of real and complex numbers
(3) $K \subset \mathbb{C}, \operatorname{dim}_{\mathbb{Q}} K<\infty$ is a number field

- $\mathbb{Q}[\sqrt{d}], d \in \mathbb{Q}$

Finite fields

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q} F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
(1) $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ is the prime field;
(2) \mathbb{F}_{q} is a finite field with $q=p^{n}$ elements
(3) $\mathbb{F}_{q}=\mathbb{F}_{p}[\xi], f(\xi)=0, f \in \mathbb{F}_{p}[X]$ irreducible, $\partial f=n$

Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
(3) $\mathbb{F}_{q}=\mathbb{F}_{p}[\xi], f(\xi)=0, f \in \mathbb{F}_{p}[X]$ irreducible, $\partial f=n$
(4) $\mathbb{F}_{4}=\mathbb{F}_{2}[\xi], \xi^{2}=1+\xi$
(5) $\mathbb{F}_{8}=\mathbb{F}_{2}[\alpha], \alpha^{3}=\alpha+1$ but also $\mathbb{F}_{8}=\mathbb{F}_{2}[\beta], \beta^{3}=\beta^{2}+1$, $\left(\beta=\alpha^{2}+1\right)$
(6 $\mathbb{F}_{101101}=\mathbb{F}_{101}[\omega], \omega^{101}=\omega+1$

Finite fields

(1) $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ is the prime field;
(2) \mathbb{F}_{q} is a finite field with $q=p^{n}$ elements

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

Notations

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History

length of ellipses
why Elliptic curves?

Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

If $F(x, y) \in \mathbb{Q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.
If $F(x, y) \in \mathbb{F}_{q}[x, y]$ a point of the curve $F=0$, means $\left(x_{0}, y_{0}\right) \in \overline{\mathbb{F}}_{q}^{2}$ s.t. $F\left(x_{0}, y_{0}\right)=0$.

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The (general) Weierstraß Equation

An elliptic curve E over a \mathbb{F}_{q} (finite field) is given by an equation

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$

The equation should not be singular

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Tangent line to a plane curve

Given $f(x, y) \in \mathbb{F}_{q}[x, y]$ and a point $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right)=0$, the tangent line is:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Tangent line to a plane curve

Given $f(x, y) \in \mathbb{F}_{q}[x, y]$ and a point $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right)=0$, the tangent line is:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0,
$$

Elliptic curves over \mathbb{F}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Tangent line to a plane curve

Given $f(x, y) \in \mathbb{F}_{q}[x, y]$ and a point $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right)=0$, the tangent line is:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0,
$$

such a tangent line cannot be computed and we say that $\left(x_{0}, y_{0}\right)$ is singular

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Tangent line to a plane curve

Given $f(x, y) \in \mathbb{F}_{q}[x, y]$ and a point $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right)=0$, the tangent line is:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

If

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0,
$$

such a tangent line cannot be computed and we say that $\left(x_{0}, y_{0}\right)$ is singular

Definition

A non singular curve is a curve without any singular point

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Tangent line to a plane curve

Given $f(x, y) \in \mathbb{F}_{q}[x, y]$ and a point $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right)=0$, the tangent line is:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

If

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0,
$$

such a tangent line cannot be computed and we say that $\left(x_{0}, y_{0}\right)$ is singular

Definition

A non singular curve is a curve without any singular point

Example

The tangent line to $x^{2}+y^{2}=1$ over \mathbb{F}_{7} at $(2,2)$ is

$$
x+y=4
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Singular points

The classical definition

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Singular points

The classical definition

Definition

A singular point $\left(x_{0}, y_{0}\right)$ on a curve $f(x, y)=0$ is a point such that

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

Elliptic curves over \mathbb{F}

F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Singular points

The classical definition

Definition

A singular point $\left(x_{0}, y_{0}\right)$ on a curve $f(x, y)=0$ is a point such that

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

So, at a singular point there is no (unique) tangent line!! In the special case of Weierstraß equations:

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

we have

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Singular points

The classical definition

Definition

A singular point $\left(x_{0}, y_{0}\right)$ on a curve $f(x, y)=0$ is a point such that

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

So, at a singular point there is no (unique) tangent line!! In the special case of Weierstraß equations:

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

we have

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
a_{1} y=3 x^{2}+2 a_{2} x+a_{4} \\
2 y+a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Singular points

The classical definition

Definition

A singular point $\left(x_{0}, y_{0}\right)$ on a curve $f(x, y)=0$ is a point such that

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

So, at a singular point there is no (unique) tangent line!! In the special case of Weierstraß equations:

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

we have

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
a_{1} y=3 x^{2}+2 a_{2} x+a_{4} \\
2 y+a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

We can express this condition in terms of the coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History

length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The Discriminant of an Equation

The condition of absence of singular points in terms of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The Discriminant of an Equation

The condition of absence of singular points in terms of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$
With a bit of Mathematica

```
Ell:=-a_6-a_4x-a_2x^2-x^3+a_3y+a_1xy+y^2;
SS := Solve[{D[Ell,x]==0,D[Ell,y]==0},{y,x}];
Simplify[ReplaceAll[Ell,SS[[1]]]*ReplaceAll[Ell,SS[[2]]]]
```

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The Discriminant of an Equation

The condition of absence of singular points in terms of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$
With a bit of Mathematica

```
Ell:=-a_6-a_4x-a_2x^2-x^3+a_3y+a_1xy+y^2;
SS := Solve[{D[Ell,x]==0,D[Ell,y]==0},{y,x}];
Simplify[ReplaceAll[Ell,SS[[1]]]*ReplaceAll[Ell,SS[[2]]]]
```


we obtain

$$
\begin{aligned}
\Delta_{E}^{\prime} & :=\frac{1}{2^{4} 3^{3}}\left(-a_{1}^{5} a_{3} a_{4}-8 a_{1}^{3} a_{2} a_{3} a_{4}-16 a_{1} a_{2}^{2} a_{3} a_{4}+36 a_{1}^{2} a_{3}^{2} a_{4}\right. \\
& -a_{1}^{4} a_{4}^{2}-8 a_{1}^{2} a_{2} a_{4}^{2}-16 a_{2}^{2} a_{4}^{2}+96 a_{1} a_{3} a_{4}^{2}+64 a_{4}^{3}+ \\
& a_{1}^{6} a_{6}+12 a_{1}^{4} a_{2} a_{6}+48 a_{1}^{2} a_{2}^{2} a_{6}+64 a_{2}^{3} a_{6}-36 a_{1}^{3} a_{3} a_{6} \\
& \left.-144 a_{1} a_{2} a_{3} a_{6}-72 a_{1}^{2} a_{4} a_{6}-288 a_{2} a_{4} a_{6}+432 a_{6}^{2}\right)
\end{aligned}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The Discriminant of an Equation

The condition of absence of singular points in terms of $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$
With a bit of Mathematica

```
Ell:=-a_6-a_4x-a_2x^2-x^3+a_3y+a_1xy+y^2;
SS := Solve[{D[Ell,x]==0,D[Ell,y]==0},{y,x}];
Simplify[ReplaceAll[Ell,SS[[1]]]*ReplaceAll[Ell,SS[[2]]]]
```

we obtain

$$
\begin{aligned}
\Delta_{E}^{\prime} & :=\frac{1}{2^{4} 3^{3}}\left(-a_{1}^{5} a_{3} a_{4}-8 a_{1}^{3} a_{2} a_{3} a_{4}-16 a_{1} a_{2}^{2} a_{3} a_{4}+36 a_{1}^{2} a_{3}^{2} a_{4}\right. \\
& -a_{1}^{4} a_{4}^{2}-8 a_{1}^{2} a_{2} a_{4}^{2}-16 a_{2}^{2} a_{4}^{2}+96 a_{1} a_{3} a_{4}^{2}+64 a_{4}^{3}+ \\
& a_{1}^{6} a_{6}+12 a_{1}^{4} a_{2} a_{6}+48 a_{1}^{2} a_{2}^{2} a_{6}+64 a_{2}^{3} a_{6}-36 a_{1}^{3} a_{3} a_{6} \\
& \left.-144 a_{1} a_{2} a_{3} a_{6}-72 a_{1}^{2} a_{4} a_{6}-288 a_{2} a_{4} a_{6}+432 a_{6}^{2}\right)
\end{aligned}
$$

Definition

The discriminant of a Weierstraß equation over $\mathbb{F}_{q}, q=p^{n}$, $p \geq 5$ is

$$
\Delta_{E}:=3^{3} \Delta_{E}^{\prime}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If $p=2$, the singularity condition becomes:

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \longrightarrow \left\{\begin{array}{l}
a_{1} y=x^{2}+a_{4} \\
a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If $p=2$, the singularity condition becomes:

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
a_{1} y=x^{2}+a_{4} \\
a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Classification of Weierstraß equations over $\mathbb{F}_{2^{\alpha}}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If $p=2$, the singularity condition becomes:

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
a_{1} y=x^{2}+a_{4} \\
a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Classification of Weierstraß equations over $\mathbb{F}_{2^{\alpha}}$

- Case $a_{1} \neq 0$:

```
El:=a6+a4x+a2x^2+x^3+a3y+a1xy+y^2;
Simplify[ReplaceAll[El,{x->a3/a1,y->((a3/a1)^2+a4)/a1}]]
```

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If $p=2$, the singularity condition becomes:

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
a_{1} y=x^{2}+a_{4} \\
a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Classification of Weierstraß equations over $\mathbb{F}_{2^{\alpha}}$

- Case $a_{1} \neq 0$:

```
El:=a6+a4x+a2x^2+x^3+a3y+a1xy+y^2;
Simplify[ReplaceAll[El,{x->a3/a1,y->((a3/a1)^2+a4)/a1}]]
```

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If $p=2$, the singularity condition becomes:

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
a_{1} y=x^{2}+a_{4} \\
a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Classification of Weierstraß equations over $\mathbb{F}_{2^{\alpha}}$

- Case $a_{1} \neq 0$:

```
El:=a6+a4x+a2x^2+x^3+a3y+a1xy+y^2;
Simplify[ReplaceAll[El,{x->a3/a1,y->((a3/a1)^2+a4)/a1}]]
```

we obtain

$$
\Delta_{E}:=\left(a_{1}^{6} a_{6}+a_{1}^{5} a_{3} a_{4}+a_{1}^{4} a_{2} a_{3}^{2}+a_{1}^{4} a_{4}^{2}+a_{1}^{3} a_{3}^{3}+a_{3}^{4}\right) / a_{1}^{6}
$$

- Case $a_{1}=0$ and $a_{3} \neq 0:$ curve non singular $\left(\Delta_{E}:=a_{3}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The discriminant of $E / \mathbb{F}_{2^{\alpha}}$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If $p=2$, the singularity condition becomes:

$$
\left\{\begin{array} { l }
{ \partial _ { x } = 0 } \\
{ \partial _ { y } = 0 }
\end{array} \longrightarrow \left\{\begin{array}{l}
a_{1} y=x^{2}+a_{4} \\
a_{1} x+a_{3}=0
\end{array}\right.\right.
$$

Classification of Weierstraß equations over $\mathbb{F}_{2^{\alpha}}$

- Case $a_{1} \neq 0$:

```
El:=a6+a4x+a2x^2+x^3+a3y+a1xy+y^2;
Simplify[ReplaceAll[El,{x->a3/a1,y->((a3/a1)^2+a4)/a1}]]
```

we obtain

$$
\Delta_{E}:=\left(a_{1}^{6} a_{6}+a_{1}^{5} a_{3} a_{4}+a_{1}^{4} a_{2} a_{3}^{2}+a_{1}^{4} a_{4}^{2}+a_{1}^{3} a_{3}^{3}+a_{3}^{4}\right) / a_{1}^{6}
$$

- Case $a_{1}=0$ and $a_{3} \neq 0$: curve non singular ($\Delta_{E}:=a_{3}$)
- Case $a_{1}=0$ and $a_{3}=0$: curve singular $\left(x_{0}, y_{0}\right),\left(x_{0}^{2}=a_{4}, y_{0}^{2}=a_{2} a_{4}+a_{6}\right)$ is the singular point!

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation of $E / \mathbb{F}_{p^{\alpha}}, p \neq 2$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{p^{\alpha}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Special Weierstraß equation of $E / \mathbb{F}_{p^{\alpha}}, p \neq 2$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{p^{\alpha}}
$$

If we "complete the squares" by applying the transformation:

$$
\left\{\begin{array}{l}
x \leftarrow x \\
y \leftarrow y-\frac{a_{1} x+a_{3}}{2}
\end{array}\right.
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Special Weierstraß equation of $E / \mathbb{F}_{p^{\alpha}}, p \neq 2$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{p^{\alpha}}
$$

If we "complete the squares" by applying the transformation:

$$
\left\{\begin{array}{l}
x \leftarrow x \\
y \leftarrow y-\frac{a_{1} x+a_{3}}{2}
\end{array}\right.
$$

the Weierstraß equation becomes:
where $a_{2}^{\prime}=a_{2}+\frac{E_{1}^{\prime}: y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}}{4}=a_{4}+\frac{a_{1} a_{3}}{2}, a_{6}^{\prime}=a_{6}+\frac{a_{3}^{2}}{4}$
Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation of $E / \mathbb{F}_{p^{\alpha}}, p \neq 2$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{p^{\alpha}}
$$

If we "complete the squares" by applying the transformation:

$$
\left\{\begin{array}{l}
x \leftarrow x \\
y \leftarrow y-\frac{a_{1} x+a_{3}}{2}
\end{array}\right.
$$

the Weierstraß equation becomes:

$$
E^{\prime}: y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}
$$

where $a_{2}^{\prime}=a_{2}+\frac{a_{1}^{2}}{4}, a_{4}^{\prime}=a_{4}+\frac{a_{1} a_{3}}{2}, a_{6}^{\prime}=a_{6}+\frac{a_{3}^{2}}{4}$ If $p \geq 5$, we can also apply the transformation

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation of $E / \mathbb{F}_{p^{\alpha}}, p \neq 2$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{p^{\alpha}}
$$

If we "complete the squares" by applying the transformation:

$$
\left\{\begin{array}{l}
x \leftarrow x \\
y \leftarrow y-\frac{a_{1} x+a_{3}}{2}
\end{array}\right.
$$

the Weierstraß equation becomes:

$$
E^{\prime}: y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}
$$

where $a_{2}^{\prime}=a_{2}+\frac{a_{1}^{2}}{4}, a_{4}^{\prime}=a_{4}+\frac{a_{1} a_{3}}{2}, a_{6}^{\prime}=a_{6}+\frac{a_{3}^{2}}{4}$ If $p \geq 5$, we can also apply the transformation

$$
\left\{\begin{array}{l}
x \leftarrow x-\frac{a_{2}^{\prime}}{3} \\
y \leftarrow y
\end{array}\right.
$$

obtaining the equations:

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation of $E / \mathbb{F}_{p^{\alpha}}, p \neq 2$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{p^{\alpha}}
$$

If we "complete the squares" by applying the transformation:

$$
\left\{\begin{array}{l}
x \leftarrow x \\
y \leftarrow y-\frac{a_{1} x+a_{3}}{2}
\end{array}\right.
$$

the Weierstraß equation becomes:

$$
E^{\prime}: y^{2}=x^{3}+a_{2}^{\prime} x^{2}+a_{4}^{\prime} x+a_{6}^{\prime}
$$

where $a_{2}^{\prime}=a_{2}+\frac{a_{1}^{2}}{4}, a_{4}^{\prime}=a_{4}+\frac{a_{1} a_{3}}{2}, a_{6}^{\prime}=a_{6}+\frac{a_{3}^{2}}{4}$ If $p \geq 5$, we can also apply the transformation

$$
\left\{\begin{array}{l}
x \leftarrow x-\frac{a_{2}^{\prime}}{3} \\
y \leftarrow y
\end{array}\right.
$$

obtaining the equations:

$$
E^{\prime \prime}: y^{2}=x^{3}+a_{4}^{\prime \prime} x+a_{6}^{\prime \prime}
$$

where $a_{4}^{\prime \prime}=a_{4}^{\prime}-\frac{a_{2}^{\prime 2}}{3}, a_{6}^{\prime \prime}=a_{6}^{\prime}+\frac{2 a_{3}^{\prime 3}}{27}-\frac{a_{2}^{\prime} a_{4}^{\prime}}{3}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1} \neq 0$

$$
\begin{gathered}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
\Delta_{E}:=\frac{a_{1}^{6} a_{6}+a_{1}^{5} a_{3} a_{4}+a_{1}^{4} a_{2} a_{3}^{2}+a_{1}^{4} a_{4}^{2}+a_{1}^{3} a_{3}^{3}+a_{3}^{4}}{a_{1}^{6}}
\end{gathered}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1} \neq 0$

$$
\begin{gathered}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{H}_{2} \alpha \\
\Delta_{E}:=\frac{a_{1}^{6} a_{6}+a_{1}^{5} a_{3} a_{4}+a_{1}^{4} a_{2} a_{3}^{2}+a_{1}^{4} a_{4}^{2}+a_{1}^{3} a_{3}^{3}+a_{3}^{4}}{a_{1}^{6}}
\end{gathered}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1} \neq 0$

$$
\begin{gathered}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
\Delta_{E}:=\frac{a_{1}^{6} a_{6}+a_{1}^{5} a_{3} a_{4}+a_{1}^{4} a_{2} a_{3}^{2}+a_{1}^{4} a_{4}^{2}+a_{1}^{3} a_{3}^{3}+a_{3}^{4}}{a_{1}^{6}}
\end{gathered}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1} \neq 0$

$$
\begin{gathered}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
\Delta_{E}:=\frac{a_{1}^{6} a_{6}+a_{1}^{5} a_{3} a_{4}+a_{1}^{4} a_{2} a_{3}^{2}+a_{1}^{4} a_{4}^{2}+a_{1}^{3} a_{3}^{3}+a_{3}^{4}}{a_{1}^{6}}
\end{gathered} a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

```
El:=a6+a4x+a2x^2+x^3+a3y+a1xy+y^2;
Simplify[PolynomialMod[ReplaceAll[El,
    {x->a1^2 x+a3/a1, y->a1^3y+(a1^2a4+a3^2)/a1^3}],2]]
```


Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1}=0$ and $\Delta_{E}:=a_{3} \neq 0$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1}=0$ and $\Delta_{E}:=a_{3} \neq 0$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If we apply the affine transformation:

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1}=0$ and $\Delta_{E}:=a_{3} \neq 0$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If we apply the affine transformation:

$$
\left\{\begin{array}{l}
x \longleftarrow x+a_{2} \\
y \longleftarrow y
\end{array}\right.
$$

we obtain

$$
E: y^{2}+a_{3} y=x^{3}+\left(a_{4}+a_{2}^{2}\right) x+\left(a_{6}+a_{2} a_{4}\right)
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1}=0$ and $\Delta_{E}:=a_{3} \neq 0$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If we apply the affine transformation:

$$
\left\{\begin{array}{l}
x \longleftarrow x+a_{2} \\
y \longleftarrow y
\end{array}\right.
$$

we obtain

$$
E: y^{2}+a_{3} y=x^{3}+\left(a_{4}+a_{2}^{2}\right) x+\left(a_{6}+a_{2} a_{4}\right)
$$

With Mathematica

```
El:=a6+a4x+a2x^2+x^3+a3y+y^2;
Simplify[PolynomialMod[ReplaceAll[El,{x->x+a2,y->y}],2]]
```

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1}=0$ and $\Delta_{E}:=a_{3} \neq 0$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If we apply the affine transformation:

$$
\left\{\begin{array}{l}
x \longleftarrow x+a_{2} \\
y \longleftarrow y
\end{array}\right.
$$

we obtain

$$
E: y^{2}+a_{3} y=x^{3}+\left(a_{4}+a_{2}^{2}\right) x+\left(a_{6}+a_{2} a_{4}\right)
$$

With Mathematica

```
El:=a6+a4x+a2x^2+x^3+a3y+y^2;
Simplify[PolynomialMod[ReplaceAll[El,{x->x+a2,y->y}],2]]
```


Definition

Two Weierstraß equations over \mathbb{F}_{q} are said (affinely) equivalent if there exists a (affine) change of variables that takes one into the other

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Special Weierstraß equation for $E / \mathbb{F}_{2^{\alpha}}$

Case $a_{1}=0$ and $\Delta_{E}:=a_{3} \neq 0$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad a_{i} \in \mathbb{F}_{2^{\alpha}}
$$

If we apply the affine transformation:

$$
\left\{\begin{array}{l}
x \longleftarrow x+a_{2} \\
y \longleftarrow y
\end{array}\right.
$$

we obtain

$$
E: y^{2}+a_{3} y=x^{3}+\left(a_{4}+a_{2}^{2}\right) x+\left(a_{6}+a_{2} a_{4}\right)
$$

With Mathematica

```
El:=a6+a4x+a2x^2+x^3+a3y+y^2;
Simplify[PolynomialMod[ReplaceAll[El,{x->x+a2,y->y}],2]]
```


Definition

Two Weierstraß equations over \mathbb{F}_{q} are said (affinely) equivalent if there exists a (affine) change of variables that takes one into the other

Exercise

Prove that necessarily the change of variables has form

$$
\left\{\begin{array}{l}
x \longleftarrow u^{2} x+r \\
y \longleftarrow u^{3} y+u^{2} s x+t
\end{array} \quad r, s, t, u \in \mathbb{F}_{q}\right.
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History

length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The Weierstraß equation

Classification of simplified forms
After applying a suitable affine transformation we can always assume that $E / \mathbb{F}_{q}\left(q=p^{n}\right)$ has a Weierstraß equation of the following form

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The Weierstraß equation

Classification of simplified forms

After applying a suitable affine transformation we can always assume that $E / \mathbb{F}_{q}\left(q=p^{n}\right)$ has a Weierstraß equation of the following form

Example (Classification)

E	p	Δ_{E}
$y^{2}=x^{3}+A x+B$	≥ 5	$4 A^{3}+27 B^{2}$
$y^{2}+x y=x^{3}+a_{2} x^{2}+a_{6}$	2	a_{6}^{2}
$y^{2}+a_{3} y=x^{3}+a_{4} x+a_{6}$	2	a_{3}^{4}
$y^{2}=x^{3}+A x^{2}+B x+C$	3	$4 A^{3} C-A^{2} B^{2}-18 A B C$ $+4 B^{3}+27 C^{2}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The Weierstraß equation

Classification of simplified forms

After applying a suitable affine transformation we can always assume that $E / \mathbb{F}_{q}\left(q=p^{n}\right)$ has a Weierstraß equation of the following form

Example (Classification)

E	p	Δ_{E}
$y^{2}=x^{3}+A x+B$	≥ 5	$4 A^{3}+27 B^{2}$
$y^{2}+x y=x^{3}+a_{2} x^{2}+a_{6}$	2	a_{6}^{2}
$y^{2}+a_{3} y=x^{3}+a_{4} x+a_{6}$	2	a_{3}^{4}
$y^{2}=x^{3}+A x^{2}+B x+C$	3	$4 A^{3} C-A^{2} B^{2}-18 A B C$ $+4 B^{3}+27 C^{2}$

Definition (Elliptic curve)

An elliptic curve is the data of a non singular Weierstraß equation (i.e. $\Delta_{E} \neq 0$)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points

The Discriminant

Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The Weierstraß equation

Classification of simplified forms

After applying a suitable affine transformation we can always assume that $E / \mathbb{F}_{q}\left(q=p^{n}\right)$ has a Weierstraß equation of the following form

Example (Classification)

E	p	Δ_{E}
$y^{2}=x^{3}+A x+B$	≥ 5	$4 A^{3}+27 B^{2}$
$y^{2}+x y=x^{3}+a_{2} x^{2}+a_{6}$	2	a_{6}^{2}
$y^{2}+a_{3} y=x^{3}+a_{4} x+a_{6}$	2	a_{3}^{4}
$y^{2}=x^{3}+A x^{2}+B x+C$	3	$4 A^{3} C-A^{2} B^{2}-18 A B C$ $+4 B^{3}+27 C^{2}$

Definition (Elliptic curve)

An elliptic curve is the data of a non singular Weierstraß equation (i.e. $\Delta_{E} \neq 0$)

Note: If $p \geq 3, \Delta_{E} \neq 0 \Leftrightarrow x^{3}+A x^{2}+B x+C$ has no double root

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Elliptic curves over \mathbb{F}_{2}

All possible Weierstraß equations over \mathbb{F}_{2} are:

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Elliptic curves over \mathbb{F}_{2}

All possible Weierstraß equations over \mathbb{F}_{2} are:

Weierstraß equations over \mathbb{F}_{2}

(1) $y^{2}+x y=x^{3}+x^{2}+1$
(2) $y^{2}+x y=x^{3}+1$
(3) $y^{2}+y=x^{3}+x$
(4) $y^{2}+y=x^{3}+x+1$
(5) $y^{2}+y=x^{3}$
(6) $y^{2}+y=x^{3}+1$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

CIMPA
Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Elliptic curves over \mathbb{F}_{2}

All possible Weierstraß equations over \mathbb{F}_{2} are:

Weierstraß equations over \mathbb{F}_{2}

(1) $y^{2}+x y=x^{3}+x^{2}+1$
(2) $y^{2}+x y=x^{3}+1$
(3) $y^{2}+y=x^{3}+x$
(4) $y^{2}+y=x^{3}+x+1$
(5) $y^{2}+y=x^{3}$
(6) $y^{2}+y=x^{3}+1$

However the change of variables $\left\{\begin{array}{l}x \leftarrow x+1 \\ y \leftarrow y+x\end{array}\right.$ takes the sixth
curve into the fifth. Hence we can remove the sixth from the list.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Elliptic curves over \mathbb{F}_{2}

All possible Weierstraß equations over \mathbb{F}_{2} are:

Weierstraß equations over \mathbb{F}_{2}

(1) $y^{2}+x y=x^{3}+x^{2}+1$
(2) $y^{2}+x y=x^{3}+1$
(3) $y^{2}+y=x^{3}+x$
(4) $y^{2}+y=x^{3}+x+1$
(5) $y^{2}+y=x^{3}$
(6) $y^{2}+y=x^{3}+1$

However the change of variables $\left\{\begin{array}{l}x \leftarrow x+1 \\ y \leftarrow y+x\end{array}\right.$ takes the sixth curve into the fifth. Hence we can remove the sixth from the list.

Fact:

Elliptic curves in characteristic 3

Via a suitable transformation $\left(x \rightarrow u^{2} x+r, y \rightarrow u^{3} y+u^{2} s x+t\right)$ over $\mathbb{F}_{3}, 8$ inequivalent elliptic curves over \mathbb{F}_{3} are found:

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Elliptic curves in characteristic 3

Via a suitable transformation $\left(x \rightarrow u^{2} x+r, y \rightarrow u^{3} y+u^{2} s x+t\right)$
over $\mathbb{F}_{3}, 8$ inequivalent elliptic curves over \mathbb{F}_{3} are found:

Weierstraß equations over \mathbb{F}_{3}

(1) $y^{2}=x^{3}+x$
(2) $y^{2}=x^{3}-x$
(3) $y^{2}=x^{3}-x+1$
(4) $y^{2}=x^{3}-x-1$
(5) $y^{2}=x^{3}+x^{2}+1$
(6) $y^{2}=x^{3}+x^{2}-1$
(7) $y^{2}=x^{3}-x^{2}+1$
(8) $y^{2}=x^{3}-x^{2}-1$

Elliptic curves in characteristic 3

Via a suitable transformation $\left(x \rightarrow u^{2} x+r, y \rightarrow u^{3} y+u^{2} s x+t\right)$
over $\mathbb{F}_{3}, 8$ inequivalent elliptic curves over \mathbb{F}_{3} are found:

Weierstraß equations over \mathbb{F}_{3}

(1) $y^{2}=x^{3}+x$
(2) $y^{2}=x^{3}-x$
(3) $y^{2}=x^{3}-x+1$
(4) $y^{2}=x^{3}-x-1$
(5) $y^{2}=x^{3}+x^{2}+1$
(6) $y^{2}=x^{3}+x^{2}-1$
(7) $y^{2}=x^{3}-x^{2}+1$
(8) $y^{2}=x^{3}-x^{2}-1$

Exercise: Prove that

(1) Over \mathbb{F}_{5} there are 12 elliptic curves

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Elliptic curves in characteristic 3

Via a suitable transformation $\left(x \rightarrow u^{2} x+r, y \rightarrow u^{3} y+u^{2} s x+t\right)$
over $\mathbb{F}_{3}, 8$ inequivalent elliptic curves over \mathbb{F}_{3} are found:

Weierstraß equations over \mathbb{F}_{3}

(1) $y^{2}=x^{3}+x$
(2) $y^{2}=x^{3}-x$
(3) $y^{2}=x^{3}-x+1$
(4) $y^{2}=x^{3}-x-1$
(5) $y^{2}=x^{3}+x^{2}+1$
(6) $y^{2}=x^{3}+x^{2}-1$
(7) $y^{2}=x^{3}-x^{2}+1$
(8) $y^{2}=x^{3}-x^{2}-1$

Exercise: Prove that

(1) Over \mathbb{F}_{5} there are 12 elliptic curves
(2) Compute all of them

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Elliptic curves in characteristic 3

Via a suitable transformation $\left(x \rightarrow u^{2} x+r, y \rightarrow u^{3} y+u^{2} s x+t\right)$
over $\mathbb{F}_{3}, 8$ inequivalent elliptic curves over \mathbb{F}_{3} are found:

Weierstraß equations over \mathbb{F}_{3}

(1) $y^{2}=x^{3}+x$
(2) $y^{2}=x^{3}-x$
(3) $y^{2}=x^{3}-x+1$
(4) $y^{2}=x^{3}-x-1$
(5) $y^{2}=x^{3}+x^{2}+1$
(6) $y^{2}=x^{3}+x^{2}-1$
(7) $y^{2}=x^{3}-x^{2}+1$
(8) $y^{2}=x^{3}-x^{2}-1$

Exercise: Prove that

(1) Over \mathbb{F}_{5} there are 12 elliptic curves
(2) Compute all of them
(3) How many are there over \mathbb{F}_{4}, over \mathbb{F}_{7} and over \mathbb{F}_{8} ?

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\boldsymbol{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Basic properties of the projective plane

(1) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \Rightarrow P=[\mathbf{x}]=\left\{\lambda \mathbf{x}: \lambda \in \mathbb{F}_{q}^{*}\right\}, \mathbf{x} \in \mathbb{F}_{q}^{3}, \mathbf{x} \neq 0$;

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Basic properties of the projective plane

(1) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \Rightarrow P=[\mathbf{x}]=\left\{\lambda \mathbf{x}: \lambda \in \mathbb{F}_{q}^{*}\right\}, \mathbf{x} \in \mathbb{F}_{q}^{3}, \mathbf{x} \neq 0$;
(2) $\#[\mathbf{x}]=q-1$. Hence $\# \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\frac{q^{3}-1}{q-1}=q^{2}+q+1$;

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Basic properties of the projective plane

(1) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \Rightarrow P=[\mathbf{x}]=\left\{\lambda \mathbf{x}: \lambda \in \mathbb{F}_{q}^{*}\right\}, \mathbf{x} \in \mathbb{F}_{q}^{3}, \mathbf{x} \neq 0$;
(2) $\#[\mathbf{x}]=q-1$. Hence $\# \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\frac{q^{3}-1}{q-1}=q^{2}+q+1$;
(3) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right), P=:[x, y, z]$ with $(x, y, z) \in \mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}$;

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Basic properties of the projective plane

(1) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \Rightarrow P=[\mathbf{x}]=\left\{\lambda \mathbf{x}: \lambda \in \mathbb{F}_{q}^{*}\right\}, \mathbf{x} \in \mathbb{F}_{q}^{3}, \mathbf{x} \neq 0$;
(2) $\#[\mathbf{x}]=q-1$. Hence $\# \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\frac{q^{3}-1}{q-1}=q^{2}+q+1$;
(3) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right), P=:[x, y, z]$ with $(x, y, z) \in \mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}$;
(4) $[x, y, z]=\left[x^{\prime}, y^{\prime}, z^{\prime}\right] \Longleftrightarrow \operatorname{rank}\left(\begin{array}{ccc}x & y & z \\ x^{\prime} & y^{\prime} & z^{\prime}\end{array}\right)=1$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Basic properties of the projective plane

(1) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \Rightarrow P=[\mathbf{x}]=\left\{\lambda \mathbf{x}: \lambda \in \mathbb{F}_{q}^{*}\right\}, \mathbf{x} \in \mathbb{F}_{q}^{3}, \mathbf{x} \neq 0$;
(2) $\#[\mathbf{x}]=q-1$. Hence $\# \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\frac{q^{3}-1}{q-1}=q^{2}+q+1$;
(3) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right), P=:[x, y, z]$ with $(x, y, z) \in \mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}$;
(4) $[x, y, z]=\left[x^{\prime}, y^{\prime}, z^{\prime}\right] \Longleftrightarrow \operatorname{rank}\left(\begin{array}{ccc}x & y & z \\ x^{\prime} & y^{\prime} & z^{\prime}\end{array}\right)=1$
(5) $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \longleftrightarrow\left\{\right.$ lines through $\mathbf{0}$ in $\left.\mathbb{F}_{q}^{3}\right\}=\left\{V \subset \mathbb{F}_{q}^{3}: \operatorname{dim} V=\right.$ 1\}

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Definition (Projective plane)

$$
\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\left(\mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}\right) / \sim
$$

where $\mathbf{0}=(0,0,0)$ and

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \quad \Leftrightarrow \quad \mathbf{x}=\lambda \mathbf{y}, \exists \lambda \in \mathbb{F}_{q}^{*}
$$

Basic properties of the projective plane

(1) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \Rightarrow P=[\mathbf{x}]=\left\{\lambda \mathbf{x}: \lambda \in \mathbb{F}_{q}^{*}\right\}, \mathbf{x} \in \mathbb{F}_{q}^{3}, \mathbf{x} \neq 0$;
(2) $\#[\mathbf{x}]=q-1$. Hence $\# \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\frac{q^{3}-1}{q-1}=q^{2}+q+1$;
(3) $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right), P=:[x, y, z]$ with $(x, y, z) \in \mathbb{F}_{q}^{3} \backslash\{\mathbf{0}\}$;
(4) $[x, y, z]=\left[x^{\prime}, y^{\prime}, z^{\prime}\right] \Longleftrightarrow \operatorname{rank}\left(\begin{array}{ccc}x & y & z \\ x^{\prime} & y^{\prime} & z^{\prime}\end{array}\right)=1$
(5) $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \longleftrightarrow\left\{\right.$ lines through $\mathbf{0}$ in $\left.\mathbb{F}_{q}^{3}\right\}=\left\{V \subset \mathbb{F}_{q}^{3}: \operatorname{dim} V=\right.$ 1\}
(6) $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \longleftrightarrow\left\{\right.$ lines in $\left.\mathbb{F}_{q}^{2}\right\},[a, b, c] \mapsto a X+b Y+c Z=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
is a point at infinity is an affine point

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
is a point at infinity is an affine point

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points
$\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\}$
line at infinity

$$
\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points
$\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$
disjoint union

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points $\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ can be thought as set of directions of lines in \mathbb{F}_{q}^{2}

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points $\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$
disjoint union
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ can be thought as set of directions of lines in \mathbb{F}_{q}^{2}

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points $\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$
disjoint union
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ can be thought as set of directions of lines in \mathbb{F}_{q}^{2}

General construction

- $\mathbb{P}_{n}(K), K$ field, $n \geq 3$ is similarly defined;

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points $\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ disjoint union
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ can be thought as set of directions of lines in \mathbb{F}_{q}^{2}

General construction

- $\mathbb{P}_{n}(K), K$ field, $n \geq 3$ is similarly defined;
- $\mathbb{P}_{n}(K)=\mathbb{A}_{n}(K) \sqcup \mathbb{P}_{n-1}(K)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points $\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ disjoint union
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ can be thought as set of directions of lines in \mathbb{F}_{q}^{2}

General construction

- $\mathbb{P}_{n}(K), K$ field, $n \geq 3$ is similarly defined;
- $\mathbb{P}_{n}(K)=\mathbb{A}_{n}(K) \sqcup \mathbb{P}_{n-1}(K)$
- $\# \mathbb{P}_{n}\left(\mathbb{F}_{q}\right)=q^{n}+\cdots+q+1$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The projective Plane

Infinite and Affine points

- $P=[x, y, 0]$
- $P=[x, y, 1]$
is a point at infinity is an affine point
- $P \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$ is either affine or at infinity
- $\mathbb{A}_{2}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 1]:(x, y) \in \mathbb{F}_{q}^{2}\right\}$
set of affine points $\# \mathbb{A}_{2}\left(\mathbb{F}_{q}\right)=q^{2}$
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right):=\left\{[x, y, 0]:(x, y) \in \mathbb{F}_{q}^{2} \backslash\{(0,0)\}\right\} \quad$ line at infinity $\# \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)=q+1$
- $\mathbb{P}_{2}\left(\mathbb{F}_{q}\right)=\mathbb{A}_{2}\left(\mathbb{F}_{q}\right) \sqcup \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ disjoint union
- $\mathbb{P}_{1}\left(\mathbb{F}_{q}\right)$ can be thought as set of directions of lines in \mathbb{F}_{q}^{2}

General construction

- $\mathbb{P}_{n}(K), K$ field, $n \geq 3$ is similarly defined;
- $\mathbb{P}_{n}(K)=\mathbb{A}_{n}(K) \sqcup \mathbb{P}_{n-1}(K)$
- $\# \mathbb{P}_{n}\left(\mathbb{F}_{q}\right)=q^{n}+\cdots+q+1$
- $\mathbb{P}_{n}(K) \longleftrightarrow\left\{\right.$ lines in $\left.K^{n}\right\}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Properties of homogeneous polynomials - Projective Curves

- $\forall \lambda, F(\lambda X, \lambda Y, \lambda Z)=\lambda^{\partial F} F(X, Y, Z)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Properties of homogeneous polynomials - Projective Curves

- $\forall \lambda, F(\lambda X, \lambda Y, \lambda Z)=\lambda^{\partial F} F(X, Y, Z)$
- If $P=\left[X_{0}, Y_{0}, Z_{0}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, then $F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ depends only on P, not on X_{0}, Y_{0}, Z_{0}

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Properties of homogeneous polynomials - Projective Curves

- $\forall \lambda, F(\lambda X, \lambda Y, \lambda Z)=\lambda^{\partial F} F(X, Y, Z)$
- If $P=\left[X_{0}, Y_{0}, Z_{0}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, then $F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ depends only on P, not on X_{0}, Y_{0}, Z_{0}
- $F(P)=0 \Leftrightarrow F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ is well defined

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Properties of homogeneous polynomials - Projective Curves

- $\forall \lambda, F(\lambda X, \lambda Y, \lambda Z)=\lambda^{\partial F} F(X, Y, Z)$
- If $P=\left[X_{0}, Y_{0}, Z_{0}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, then $F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ depends only on P, not on X_{0}, Y_{0}, Z_{0}
- $F(P)=0 \Leftrightarrow F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ is well defined
- Projective curve $F(X, Y, Z)=0$ the set of $P \in \mathbb{F}_{2}\left(\mathbb{F}_{q}\right)$ s.t. $F(P)=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Properties of homogeneous polynomials - Projective Curves

- $\forall \lambda, F(\lambda X, \lambda Y, \lambda Z)=\lambda^{\partial F} F(X, Y, Z)$
- If $P=\left[X_{0}, Y_{0}, Z_{0}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, then $F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ depends only on P, not on X_{0}, Y_{0}, Z_{0}
- $F(P)=0 \Leftrightarrow F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ is well defined
- Projective curve $F(X, Y, Z)=0$ the set of $P \in \mathbb{F}_{2}\left(\mathbb{F}_{q}\right)$ s.t. $F(P)=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Homogeneous Polynomials

Definition (Homogeneous polynomials)

$g\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ is said homogeneous if all its monomials have the same degree. i.e.

$$
g\left(X_{1}, \ldots, X_{m}\right)=\sum_{j_{1}+\cdots+j_{m}=\partial g} a_{j_{1}, \cdots, j_{m}} X_{1}^{j_{1}} \cdots X_{m}^{j_{m}}, a_{j_{1}, \cdots, j_{m}} \in \mathbb{F}_{q}
$$

Properties of homogeneous polynomials - Projective Curves

- $\forall \lambda, F(\lambda X, \lambda Y, \lambda Z)=\lambda^{\partial F} F(X, Y, Z)$
- If $P=\left[X_{0}, Y_{0}, Z_{0}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, then $F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ depends only on P, not on X_{0}, Y_{0}, Z_{0}
- $F(P)=0 \Leftrightarrow F\left(X_{0}, Y_{0}, Z_{0}\right)=0$ is well defined
- Projective curve $F(X, Y, Z)=0$ the set of $P \in \mathbb{F}_{2}\left(\mathbb{F}_{q}\right)$ s.t. $F(P)=0$

Example

Projective line $a X+b Y+c Z=0 ; Z=0$, line at infinity

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial t} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$

Elliptic curves over \mathbb{F} F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$
- the points of the curve $f=0$ are the affine points of the projective curve $F_{f}=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$
- the points of the curve $f=0$ are the affine points of the projective curve $F_{f}=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial t} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$
- the points of the curve $f=0$ are the affine points of the projective curve $F_{f}=0$

Example (homogenized curves)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$
- the points of the curve $f=0$ are the affine points of the projective curve $F_{f}=0$

Example (homogenized curves)

curve	affine curve	homogenized (projective curve)
line	$a x+b y=c$	$a X+b Y=c Z$
conic	$a x^{2}+b y^{2}=1$	$a X^{2}+b Y^{2}=Z^{2}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial f} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$
- the points of the curve $f=0$ are the affine points of the projective curve $F_{f}=0$

Example (homogenized curves)

curve	affine curve	homogenized (projective curve)
line	$a x+b y=c$	$a X+b Y=c Z$
conic	$a x^{2}+b y^{2}=1$	$a X^{2}+b Y^{2}=Z^{2}$
Z		

$Z=0$ (line at infinity)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition (Homogenized polynomial)

if $f(x, y) \in \mathbb{F}_{q}[x, y]$,

$$
F_{f}(X, Y, Z)=Z^{\partial t} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)
$$

- F_{f} is homogenoeus, the homogenized of f
- $\partial F_{f}=\partial f$
- if $f\left(x_{0}, y_{0}\right)=0$, then $F_{f}\left(x_{0}, y_{0}, 1\right)=0$
- the points of the curve $f=0$ are the affine points of the projective curve $F_{f}=0$

Example (homogenized curves)

curve	affine curve	homogenized (projective curve)
line	$a x+b y=c$	$a X+b Y=c Z$
conic	$a x^{2}+b y^{2}=1$	$a X^{2}+b Y^{2}=Z^{2}$

$Z=0$ (line at infinity)
Not the homogenized of anything

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

- line: $a x+b y+c=0$ $\rightsquigarrow \quad[b,-a, 0]$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

- line: $a x+b y+c=0$
- hyperbola: $x^{2} / a^{2}-y^{2} / b^{2}=1$
[b, -a, 0]
[a, $\pm b, 0]$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

- line: $a x+b y+c=0$
- hyperbola: $x^{2} / a^{2}-y^{2} / b^{2}=1$
- parabola: $y=a x^{2}+b x+c$
$\rightsquigarrow \quad[b,-a, 0]$
[a, $\pm b, 0]$
[0, 1, 0]

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

- line: $a x+b y+c=0$
- hyperbola: $x^{2} / a^{2}-y^{2} / b^{2}=1$
- parabola: $y=a x^{2}+b x+c$
- elliptic curve:

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad \rightsquigarrow \quad[0,1,0]
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

- line: $a x+b y+c=0$
- hyperbola: $x^{2} / a^{2}-y^{2} / b^{2}=1$
- parabola: $y=a x^{2}+b x+c$
- elliptic curve:

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad \rightsquigarrow \quad[0,1,0]
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Points at infinity of a plane curve

Definition

If $f \in \mathbb{F}_{q}[x, y]$ then

$$
\left\{[\alpha, \beta, 0] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): F_{f}(\alpha, \beta, 0)=0\right\}
$$

is the set of points at infinity of $f=0$.
(i.e. the intersection of the curve and $Z=0$, the line at infinity)

The points of $Z=0$ are directions of lines in \mathbb{F}_{q}^{2}

Example (point at infinity)

- line: $a x+b y+c=0$
- hyperbola: $x^{2} / a^{2}-y^{2} / b^{2}=1$
- parabola: $y=a x^{2}+b x+c$
- elliptic curve:

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad \rightsquigarrow \quad[0,1,0]
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples
E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$

Projective lines

tangent lines to projective curves

Definition

If $P=\left[x_{1}, y_{1}, z_{1}\right], Q=\left[x_{2}, y_{2}, z_{2}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, the projective line through P, Q is

$$
r_{P, Q}: \operatorname{det}\left|\begin{array}{lll}
X & Y & Z \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Projective lines

tangent lines to projective curves

Definition

If $P=\left[x_{1}, y_{1}, z_{1}\right], Q=\left[x_{2}, y_{2}, z_{2}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, the projective line through P, Q is

$$
r_{P, Q}: \operatorname{det}\left|\begin{array}{lll}
X & Y & Z \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0
$$

Definition

The tangent line to a projective curve $F(X, Y, Z)=0$ at a non singular point $P=\left[X_{0}, Y_{0}, Z_{0}\right]\left(F\left(X_{0}, Y_{0}, Z_{0}\right)=0\right)$ is $\frac{\partial F}{\partial X}\left(X_{0}, Y_{0}, Z_{0}\right) X+\frac{\partial F}{\partial Y}\left(X_{0}, Y_{0}, Z_{0}\right) Y+\frac{\partial F}{\partial Z}\left(X_{0}, Y_{0}, Z_{0}\right) Z=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Projective lines

tangent lines to projective curves

Definition

If $P=\left[x_{1}, y_{1}, z_{1}\right], Q=\left[x_{2}, y_{2}, z_{2}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, the projective line through P, Q is

$$
r_{P, Q}: \operatorname{det}\left|\begin{array}{lll}
X & Y & Z \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0
$$

Definition

The tangent line to a projective curve $F(X, Y, Z)=0$ at a non singular point $P=\left[X_{0}, Y_{0}, Z_{0}\right]\left(F\left(X_{0}, Y_{0}, Z_{0}\right)=0\right)$ is $\frac{\partial F}{\partial X}\left(X_{0}, Y_{0}, Z_{0}\right) X+\frac{\partial F}{\partial Y}\left(X_{0}, Y_{0}, Z_{0}\right) Y+\frac{\partial F}{\partial Z}\left(X_{0}, Y_{0}, Z_{0}\right) Z=0$

Exercise (Prove that)

(1) P belongs to its (projective) tangent line

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Projective lines

tangent lines to projective curves

Definition

If $P=\left[x_{1}, y_{1}, z_{1}\right], Q=\left[x_{2}, y_{2}, z_{2}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, the projective line through P, Q is

$$
r_{P, Q}: \operatorname{det}\left|\begin{array}{lll}
X & Y & Z \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0
$$

Definition

The tangent line to a projective curve $F(X, Y, Z)=0$ at a non singular point $P=\left[X_{0}, Y_{0}, Z_{0}\right]\left(F\left(X_{0}, Y_{0}, Z_{0}\right)=0\right)$ is $\frac{\partial F}{\partial X}\left(X_{0}, Y_{0}, Z_{0}\right) X+\frac{\partial F}{\partial Y}\left(X_{0}, Y_{0}, Z_{0}\right) Y+\frac{\partial F}{\partial Z}\left(X_{0}, Y_{0}, Z_{0}\right) Z=0$

Exercise (Prove that)

(1) P belongs to its (projective) tangent line
(2) P affine \Rightarrow its tangent line is the homogenized of the affine tangent line

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Projective lines

tangent lines to projective curves

Definition

If $P=\left[x_{1}, y_{1}, z_{1}\right], Q=\left[x_{2}, y_{2}, z_{2}\right] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$, the projective line through P, Q is

$$
r_{P, Q}: \operatorname{det}\left|\begin{array}{lll}
x & Y & Z \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0
$$

Definition

The tangent line to a projective curve $F(X, Y, Z)=0$ at a non singular point $P=\left[X_{0}, Y_{0}, Z_{0}\right]\left(F\left(X_{0}, Y_{0}, Z_{0}\right)=0\right)$ is $\frac{\partial F}{\partial X}\left(X_{0}, Y_{0}, Z_{0}\right) X+\frac{\partial F}{\partial Y}\left(X_{0}, Y_{0}, Z_{0}\right) Y+\frac{\partial F}{\partial Z}\left(X_{0}, Y_{0}, Z_{0}\right) Z=0$

Exercise (Prove that)

(1) P belongs to its (projective) tangent line
(2) P affine \Rightarrow its tangent line is the homogenized of the affine tangent line
(3) the tangent line to E / \mathbb{F}_{q} at $\infty=[0,1,0]$ is $Z=0$ (line at infinity)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set

$$
E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}
$$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set

$$
E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}
$$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set

$$
E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}
$$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set

$$
E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}
$$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set

$$
E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}
$$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\} \quad \rightarrow$ algebraic advantages

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set

$$
E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}
$$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\} \quad \rightarrow$ algebraic advantages ∞ might be though as the "vertical direction"

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set
$E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\} \quad \rightarrow-\rightarrow$ algebraic advantages ∞ might be though as the "vertical direction"

Definition (line through points $P, Q \in E\left(\mathbb{F}_{q}\right)$)
$r_{P, Q}: \begin{cases}\text { line through } P \text { and } Q & \text { if } P \neq Q \\ \text { tangent line to } E \text { at } P & \text { if } P=Q\end{cases}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set
$E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\} \quad \rightarrow$ algebraic advantages ∞ might be though as the "vertical direction"

Definition (line through points $P, Q \in E\left(\mathbb{F}_{q}\right)$)
$r_{P, Q}: \begin{cases}\text { line through } P \text { and } Q & \text { if } P \neq Q \\ \text { tangent line to } E \text { at } P & \text { if } P=Q\end{cases}$
projective or affine

- if $\#\left(r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)\right) \geq 2 \Rightarrow \#\left(r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)\right)=3$
if tangent line, contact point is counted with multiplicity

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set
$E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\} \quad \rightarrow$ algebraic advantages ∞ might be though as the "vertical direction"

Definition (line through points $P, Q \in E\left(\mathbb{F}_{q}\right)$)
$r_{P, Q}: \begin{cases}\text { line through } P \text { and } Q & \text { if } P \neq Q \\ \text { tangent line to } E \text { at } P & \text { if } P=Q\end{cases}$
projective or affine

- if $\#\left(r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)\right) \geq 2 \Rightarrow \#\left(r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)\right)=3$
if tangent line, contact point is counted with multiplicity
- $r_{\infty, \infty} \cap E\left(\mathbb{F}_{q}\right)=\{\infty, \infty, \infty\}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

The definition of $E\left(\mathbb{F}_{q}\right)$

Let E / \mathbb{F}_{q} elliptic curve, $\infty:=[0,1,0]$. Set
$E\left(\mathbb{F}_{q}\right)=\left\{[X, Y, Z] \in \mathbb{P}_{2}\left(\mathbb{F}_{q}\right): Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}\right\}$ or equivalently

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{\infty\}
$$

We can think either

- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{P}_{2}\left(\mathbb{F}_{q}\right) \quad \rightarrow$ geometric advantages
- $E\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}^{2} \cup\{\infty\} \quad \rightarrow$ algebraic advantages ∞ might be though as the "vertical direction"

Definition (line through points $P, Q \in E\left(\mathbb{F}_{q}\right)$)
$r_{P, Q}: \begin{cases}\text { line through } P \text { and } Q & \text { if } P \neq Q \\ \text { tangent line to } E \text { at } P & \text { if } P=Q\end{cases}$
projective or affine

- if $\#\left(r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)\right) \geq 2 \Rightarrow \#\left(r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)\right)=3$
if tangent line, contact point is counted with multiplicity
- $r_{\infty, \infty} \cap E\left(\mathbb{F}_{q}\right)=\{\infty, \infty, \infty\}$
- $r_{P, Q}: a X+b Z=0($ vertical $) \Rightarrow \infty=[0,1,0] \in r_{P, Q}$

History (from Wikipedia)

Carl Gustav Jacob Jacobi

 (10/12/1804-18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

$$
-x y+y^{2}+y=x^{3}-3 x^{2}+x+1
$$

Carl Gustav Jacob Jacobi

 (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

$$
-x y+y^{2}+y=x^{3}-3 x^{2}+x+1
$$

Carl Gustav Jacob Jacobi

 (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

$$
-x y+y^{2}+y=x^{3}-3 x^{2}+x+1
$$

Carl Gustav Jacob Jacobi

 (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi

 (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi

 (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity
$[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$

$$
-x y+y^{2}+y=x^{3}-3 x^{2}+x+1
$$

$$
\begin{aligned}
& r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)=\{P, Q, R\} \\
& r_{R, \infty} \cap E\left(\mathbb{F}_{q}\right)=\left\{\infty, R, R^{\prime}\right\}
\end{aligned}
$$

$$
P+{ }_{E} Q:=R^{\prime}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

History (from Wikipedia)

Carl Gustav Jacob Jacobi (10/12/1804 - 18/02/1851) was a German mathematician, who made fundamental contributions to elliptic functions, dynamics, differential equations, and number theory.

Some of His Achievements:

- Theta and elliptic function
- Hamilton Jacobi Theory
- Inventor of determinants
- Jacobi Identity
$[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$

$$
-x y+y^{2}+y=x^{3}-3 x^{2}+x+1
$$

$$
\begin{aligned}
& r_{P, Q} \cap E\left(\mathbb{F}_{q}\right)=\{P, Q, R\} \\
& r_{R, \infty} \cap E\left(\mathbb{F}_{q}\right)=\left\{\infty, R, R^{\prime}\right\}
\end{aligned}
$$

$$
P+{ }_{E} Q:=R^{\prime}
$$

$$
r_{P, \infty} \cap E\left(\mathbb{F}_{q}\right)=\left\{P, \infty, P^{\prime}\right\}
$$

$$
-P:=P^{\prime}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$

$$
\begin{array}{r}
\forall P, Q \in E\left(\mathbb{F}_{q}\right) \\
\forall P \in E\left(\mathbb{F}_{q}\right)
\end{array}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$

$$
\begin{array}{r}
\forall P, Q \in E\left(\mathbb{F}_{q}\right) \\
\forall P \in E\left(\mathbb{F}_{q}\right) \\
\forall P \in E\left(\mathbb{F}_{q}\right)
\end{array}
$$

F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+_{E}(-P)=\infty$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+E R$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+E R$
(e) $P+{ }_{E} Q=Q+E P$

$$
\begin{array}{r}
\forall P, Q \in E\left(\mathbb{F}_{q}\right) \\
\forall P \in E\left(\mathbb{F}_{q}\right) \\
\forall P \in E\left(\mathbb{F}_{q}\right) \\
\forall P, Q, R \in E\left(\mathbb{F}_{q}\right) \\
\forall P, Q \in E\left(\mathbb{F}_{q}\right)
\end{array}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+E R$
(e) $P+_{E} Q=Q+e P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+{ }_{E} R$
(e) $P+_{E} Q=Q+{ }_{E} P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

- $\left(E\left(\mathbb{F}_{q}\right),+_{E}\right)$ commutative group

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+{ }_{E} R$
(e) $P+{ }_{E} Q=Q+{ }_{E} P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

- $\left(E\left(\mathbb{F}_{q}\right),+_{E}\right)$ commutative group
- All group properties are easy except associative law (d)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+{ }_{E} R$
(e) $P+_{E} Q=Q+{ }_{E} P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

- $\left(E\left(\mathbb{F}_{q}\right),+_{E}\right)$ commutative group
- All group properties are easy except associative law (d)
- Geometric proof of associativity uses Pappo's Theorem

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+E R$
(e) $P+_{E} Q=Q+E P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

- $\left(E\left(\mathbb{F}_{q}\right),+_{E}\right)$ commutative group
- All group properties are easy except associative law (d)
- Geometric proof of associativity uses Pappo's Theorem
- We shall comment on how to do it by explicit computation

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+{ }_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
$\forall P \in E\left(\mathbb{F}_{q}\right)$
(d) $P+{ }_{E}(Q+E R)=(P+E Q)+E R$
(e) $P+_{E} Q=Q+{ }_{E} P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

- $\left(E\left(\mathbb{F}_{q}\right),+_{E}\right)$ commutative group
- All group properties are easy except associative law (d)
- Geometric proof of associativity uses Pappo's Theorem
- We shall comment on how to do it by explicit computation
- can substitute \mathbb{F}_{q} with any field K; Theorem holds for $\left(E(K),+_{E}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Properties of the operation " $+E$ "

Theorem

The addition law on $E\left(\mathbb{F}_{q}\right)$ has the following properties:
(a) $P+_{E} Q \in E\left(\mathbb{F}_{q}\right)$
(b) $P+{ }_{E} \infty=\infty+{ }_{E} P=P$
(c) $P+E(-P)=\infty$

$$
\forall P, Q \in E\left(\mathbb{F}_{q}\right)
$$

$$
\forall P \in E\left(\mathbb{F}_{q}\right)
$$

$$
\forall P \in E\left(\mathbb{F}_{q}\right)
$$

(d) $P+{ }_{E}\left(Q+{ }_{E} R\right)=\left(P+{ }_{E} Q\right)+E R$
(e) $P+_{E} Q=Q+{ }_{E} P$
$\forall P, Q, R \in E\left(\mathbb{F}_{q}\right)$
$\forall P, Q \in E\left(\mathbb{F}_{q}\right)$

- $\left(E\left(\mathbb{F}_{q}\right),+_{E}\right)$ commutative group
- All group properties are easy except associative law (d)
- Geometric proof of associativity uses Pappo's Theorem
- We shall comment on how to do it by explicit computation
- can substitute \mathbb{F}_{q} with any field K; Theorem holds for $\left(E(K),+_{E}\right)$
- In particular, if E / \mathbb{F}_{q}, can consider the groups $E\left(\overline{\mathbb{F}}_{q}\right)$ or $E\left(\mathbb{F}_{q^{n}}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Computing the inverse $-P$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Computing the inverse $-P$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

If $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{q}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Computing the inverse $-P$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

If $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{q}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Computing the inverse $-P$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

If $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{q}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Computing the inverse $-P$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

If $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{q}\right)$
Definition: $-P:=P^{\prime}$ where $r_{P, \infty} \cap E\left(\mathbb{F}_{q}\right)=\left\{P, \infty, P^{\prime}\right\}$

Write $P^{\prime}=\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$. Since $r_{P, \infty}: x=x_{1} \Rightarrow x_{1}^{\prime}=x_{1}$ and y_{1} satisfies

$$
y^{2}+a_{1} x_{1} y+a_{3} y-\left(x_{1}^{3}+a_{2} x_{1}^{2}+a_{4} x_{1}+a_{6}\right)=\left(y-y_{1}\right)\left(y-y_{1}^{\prime}\right)
$$

So $y_{1}+y_{1}^{\prime}=-a_{1} x_{1}-a_{3}$ (both coefficients of y) and

$$
-P=-\left(x_{1}, y_{1}\right)=\left(x_{1},-a_{1} x_{1}-a_{3}-y_{1}\right)
$$

So, if $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)$,
Definition: $P_{1}+{ }_{E} P_{2}=-P_{3}$ where $r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Computing the inverse $-P$

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

If $P=\left(x_{1}, y_{1}\right) \in E\left(\mathbb{F}_{q}\right)$
Definition: $-P:=P^{\prime}$ where $r_{P, \infty} \cap E\left(\mathbb{F}_{q}\right)=\left\{P, \infty, P^{\prime}\right\}$

Write $P^{\prime}=\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$. Since $r_{P, \infty}: x=x_{1} \Rightarrow x_{1}^{\prime}=x_{1}$ and y_{1} satisfies

$$
y^{2}+a_{1} x_{1} y+a_{3} y-\left(x_{1}^{3}+a_{2} x_{1}^{2}+a_{4} x_{1}+a_{6}\right)=\left(y-y_{1}\right)\left(y-y_{1}^{\prime}\right)
$$

So $y_{1}+y_{1}^{\prime}=-a_{1} x_{1}-a_{3}$ (both coefficients of y) and

$$
-P=-\left(x_{1}, y_{1}\right)=\left(x_{1},-a_{1} x_{1}-a_{3}-y_{1}\right)
$$

So, if $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)$,
Definition: $P_{1}+{ }_{E} P_{2}=-P_{3}$ where $r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}$
Finally, if $P_{3}=\left(x_{3}, y_{3}\right)$, then

$$
P_{1}+E P_{2}=-P_{3}=\left(x_{3},-a_{1} x_{3}-a_{3}-y_{3}\right)
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity Homogeneous Coordinates The sum of points

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Lines through points of E

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$,

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Lines through points of E

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$,

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)
$$

(1) $P_{1} \neq P_{2}$ and $x_{1} \neq x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: y=\lambda x+\nu$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}-x_{1}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Lines through points of E

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$,

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)
$$

(1) $P_{1} \neq P_{2}$ and $x_{1} \neq x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: y=\lambda x+\nu$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}-x_{1}}
$$

(2) $P_{1} \neq P_{2}$ and $x_{1}=x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: x=x_{1}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Lines through points of E

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$,

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)
$$

(1) $P_{1} \neq P_{2}$ and $x_{1} \neq x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: y=\lambda x+\nu$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}-x_{1}}
$$

(2) $P_{1} \neq P_{2}$ and $x_{1}=x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: x=x_{1}$
(3) $P_{1}=P_{2}$ and $2 y_{1}+a_{1} x_{1}+a_{3} \neq 0 \Longrightarrow r_{P_{1}, P_{2}}: y=\lambda x+\nu$
$\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, \nu=-\frac{a_{3} y_{1}+x_{1}^{3}-a_{4} x_{1}-2 a_{6}}{2 y_{1}+a_{1} x_{1}+a_{3}}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Lines through points of E

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$,

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)
$$

(1) $P_{1} \neq P_{2}$ and $x_{1} \neq x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: y=\lambda x+\nu$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}-x_{1}}
$$

(2) $P_{1} \neq P_{2}$ and $x_{1}=x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: x=x_{1}$
(3) $P_{1}=P_{2}$ and $2 y_{1}+a_{1} x_{1}+a_{3} \neq 0 \Longrightarrow r_{P_{1}, P_{2}}: y=\lambda x+\nu$
$\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, \nu=-\frac{a_{3} y_{1}+x_{1}^{3}-a_{4} x_{1}-2 a_{6}}{2 y_{1}+a_{1} x_{1}+a_{3}}$
(4) $P_{1}=P_{2}$ and $2 y_{1}+a_{1} x_{1}+a_{3}=0 \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: x=x_{1}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Lines through points of E

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{1}, a_{3}, a_{2}, a_{4}, a_{6} \in \mathbb{F}_{q}$,
$P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right)$
(1) $P_{1} \neq P_{2}$ and $x_{1} \neq x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: y=\lambda x+\nu$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad \nu=\frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}-x_{1}}
$$

(2) $P_{1} \neq P_{2}$ and $x_{1}=x_{2} \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: x=x_{1}$
(3) $P_{1}=P_{2}$ and $2 y_{1}+a_{1} x_{1}+a_{3} \neq 0 \Longrightarrow r_{P_{1}, P_{2}}: y=\lambda x+\nu$
$\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x_{1}+a_{3}}, \nu=-\frac{a_{3} y_{1}+x_{1}^{3}-a_{4} x_{1}-2 a_{6}}{2 y_{1}+a_{1} x_{1}+a_{3}}$
(4) $P_{1}=P_{2}$ and $2 y_{1}+a_{1} x_{1}+a_{3}=0 \quad \Longrightarrow \quad r_{P_{1}, P_{2}}: x=x_{1}$
(5) $r_{P_{1}, \infty}: x=x_{1}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Intersection between a line and E

We want to compute $P_{3}=\left(x_{3}, y_{3}\right)$ where $r_{P_{1}, P_{2}}: y=\lambda x+\nu$,

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Intersection between a line and E

We want to compute $P_{3}=\left(x_{3}, y_{3}\right)$ where $r_{P_{1}, P_{2}}: y=\lambda x+\nu$,

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}
$$

We find the intersection:

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{\begin{array}{l}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
r_{P_{1}, P_{2}}: y=\lambda x+\nu
\end{array}\right.
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Intersection between a line and E

We want to compute $P_{3}=\left(x_{3}, y_{3}\right)$ where $r_{P_{1}, P_{2}}: y=\lambda x+\nu$,

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}
$$

We find the intersection:

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{\begin{array}{l}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
r_{P_{1}, P_{2}}: y=\lambda x+\nu
\end{array}\right.
$$

Substituting

$$
(\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Intersection between a line and E

We want to compute $P_{3}=\left(x_{3}, y_{3}\right)$ where $r_{P_{1}, P_{2}}: y=\lambda x+\nu$,

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}
$$

We find the intersection:

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{\begin{array}{l}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
r_{P_{1}, P_{2}}: y=\lambda x+\nu
\end{array}\right.
$$

Substituting

$$
\begin{aligned}
& (\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
& \text { Since } x_{1} \text { and } x_{2} \text { are solutions, we can find } x_{3} \text { by comparing }
\end{aligned}
$$

$$
x^{3}+a_{2} x^{2}+a_{4} x+a_{6}-\left((\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)\right)=
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Intersection between a line and E

We want to compute $P_{3}=\left(x_{3}, y_{3}\right)$ where $r_{P_{1}, P_{2}}: y=\lambda x+\nu$,

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}
$$

We find the intersection:

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{\begin{array}{l}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
r_{P_{1}, P_{2}}: y=\lambda x+\nu
\end{array}\right.
$$

Substituting

$$
\begin{aligned}
& (\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
& \text { Since } x_{1} \text { and } x_{2} \text { are solutions, we can find } x_{3} \text { by comparing }
\end{aligned}
$$

$$
\begin{array}{ll}
x^{3}+a_{2} x^{2}+a_{4} x+a_{6}-\left((\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)\right) & = \\
x^{3}+\left(a_{2}-\lambda^{2}-a_{1} \lambda\right) x^{2}+\cdots & =
\end{array}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Intersection between a line and E

We want to compute $P_{3}=\left(x_{3}, y_{3}\right)$ where $r_{P_{1}, P_{2}}: y=\lambda x+\nu$,

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{P_{1}, P_{2}, P_{3}\right\}
$$

We find the intersection:

$$
r_{P_{1}, P_{2}} \cap E\left(\mathbb{F}_{q}\right)=\left\{\begin{array}{l}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
r_{P_{1}, P_{2}}: y=\lambda x+\nu
\end{array}\right.
$$

Substituting

$$
\begin{aligned}
& (\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
& \text { Since } x_{1} \text { and } x_{2} \text { are solutions, we can find } x_{3} \text { by comparing }
\end{aligned}
$$

$$
\begin{aligned}
& x^{3}+a_{2} x^{2}+a_{4} x+a_{6}-\left((\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)\right)= \\
& x^{3}+\left(a_{2}-\lambda^{2}-a_{1} \lambda\right) x^{2}+\cdots \\
& \left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)=x^{3}-\left(x_{1}+x_{2}+x_{3}\right) x^{2}+\cdots
\end{aligned}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Intersection between a line and E

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$

$$
\begin{aligned}
& x^{3}+a_{2} x^{2}+a_{4} x+a_{6}-\left((\lambda x+\nu)^{2}+a_{1} x(\lambda x+\nu)+a_{3}(\lambda x+\nu)\right)= \\
& x^{3}+\left(a_{2}-\lambda^{2}-a_{1} \lambda\right) x^{2}+\cdots \\
& \left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)=x^{3}-\left(x_{1}+x_{2}+x_{3}\right) x^{2}+\cdots
\end{aligned}
$$

Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Intersection between a line and E

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Finally

$$
P_{3}=\left(\lambda^{2}-a_{1} \lambda-a_{2}-x_{1}-x_{2}, \lambda^{3}-a_{1} \lambda^{2}-\lambda\left(a_{2}+x_{1}+x_{2}\right)+\nu\right)
$$

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
\begin{aligned}
& \qquad E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
& P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\}, \\
& \text { Addition Laws for the sum of affine points } \\
& \text { - If } P_{1} \neq P_{2} \\
& \quad \text { - } x_{1}=x_{2} \quad \Rightarrow P_{1}+E P_{2}=\infty
\end{aligned}
$$

F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}$
- $2 y_{1}+a_{1} x+a_{3}=0$

$$
\Rightarrow \quad P_{1}+E P_{2}=2 P_{1}=\infty
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}$
- $2 y_{1}+a_{1} x+a_{3}=0$

$$
\Rightarrow \quad P_{1}+E P_{2}=2 P_{1}=\infty
$$

- $2 y_{1}+a_{1} x+a_{3} \neq 0$

$$
\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x+a_{3}}, \nu=-\frac{a_{3} y_{1}+x_{1}^{3}-a_{4} x_{1}-2 a_{6}}{2 y_{1}+a_{1} x_{1}+a_{3}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}$
- $2 y_{1}+a_{1} x+a_{3}=0$

$$
\Rightarrow \quad P_{1}+E P_{2}=2 P_{1}=\infty
$$

- $2 y_{1}+a_{1} x+a_{3} \neq 0$

$$
\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x+a_{3}}, \nu=-\frac{a_{3} y_{1}+x_{1}^{3}-a_{4} x_{1}-2 a_{6}}{2 y_{1}+a_{1} x_{1}+a_{3}}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary)

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}$
- $2 y_{1}+a_{1} x+a_{3}=0$

$$
\Rightarrow \quad P_{1}+E P_{2}=2 P_{1}=\infty
$$

- $2 y_{1}+a_{1} x+a_{3} \neq 0$

$$
\lambda=\frac{3 x_{1}^{2}+2 a_{2} x_{1}+a_{4}-a_{1} y_{1}}{2 y_{1}+a_{1} x+a_{3}}, \nu=-\frac{a_{3} y_{1}+x_{1}^{3}-a_{4} x_{1}-2 a_{6}}{2 y_{1}+a_{1} x_{1}+a_{3}}
$$

Then

$$
P_{1}+E P_{2}=\left(\lambda^{2}-a_{1} \lambda-a_{2}-x_{1}-x_{2},-\lambda^{3}-a_{1}^{2} \lambda+\left(\lambda+a_{1}\right)\left(a_{2}+x_{1}+x_{2}\right)-a_{3}-\nu\right)
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Formulas for Addition on E (Summary for special equation)

$$
E: y^{2}=x^{3}+A x+B
$$

$$
P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q}\right) \backslash\{\infty\},
$$

Addition Laws for the sum of affine points

- If $P_{1} \neq P_{2}$
- $x_{1}=x_{2}$

$$
\Rightarrow \quad P_{1}+E P_{2}=\infty
$$

- $x_{1} \neq x_{2}$

$$
\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \nu=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
$$

- If $P_{1}=P_{2}$
- $y_{1}=0$

$$
\Rightarrow \quad P_{1}+E P_{2}=2 P_{1}=\infty
$$

- $y_{1} \neq 0$

$$
\lambda=\frac{3 x_{1}^{2}+A}{2 y_{1}}, \nu=-\frac{x_{1}^{3}-A x_{1}-2 B}{2 y_{1}}
$$

Then

$$
P_{1}+E P_{2}=\left(\lambda^{2}-x_{1}-x_{2},-\lambda^{3}+\lambda\left(x_{1}+x_{2}\right)-\nu\right)
$$

A Finite Field Example

Over \mathbb{F}_{p} geometric pictures don't make sense.

Example

Let $E: y^{2}=x^{3}-5 x+8 / \mathbb{F}_{37}$,

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

A Finite Field Example

Over \mathbb{F}_{p} geometric pictures don't make sense.

Example

Let $E: y^{2}=x^{3}-5 x+8 / \mathbb{F}_{37}, \quad P=(6,3), Q=(9,10) \in E\left(\mathbb{F}_{37}\right)$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

A Finite Field Example

Over \mathbb{F}_{p} geometric pictures don't make sense.

Example

$$
\text { Let } E: y^{2}=x^{3}-5 x+8 / \mathbb{F}_{37}, \quad P=(6,3), Q=(9,10) \in E\left(\mathbb{F}_{37}\right)
$$

$$
r_{P, Q}: y=27 x+26 \quad r_{P, P}: y=11 x+11
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

A Finite Field Example

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

A Finite Field Example

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations

$$
r_{P, Q} \cap E\left(\mathbb{F}_{37}\right)=\left\{\begin{array}{l}
y^{2}=x^{3}-5 x+8 \\
y=27 x+26
\end{array}=\{(6,3),(9,10),(11,27)\}\right.
$$

Singular points

The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$

$$
r_{P, P} \cap E\left(\mathbb{F}_{37}\right)=\left\{\begin{array}{l}
y^{2}=x^{3}-5 x+8 \\
y=11 x+11
\end{array}=\{(6,3),(6,3),(35,26)\}\right.
$$

Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates

A Finite Field Example

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves? Fields

Weierstraß Equations

$$
r_{P, Q} \cap E\left(\mathbb{F}_{37}\right)=\left\{\begin{array}{l}
y^{2}=x^{3}-5 x+8 \\
y=27 x+26
\end{array}=\{(6,3),(9,10),(11,27)\}\right.
$$

$$
r_{P, P} \cap E\left(\mathbb{F}_{37}\right)=\left\{\begin{array}{l}
y^{2}=x^{3}-5 x+8 \\
y=11 x+11
\end{array}=\{(6,3),(6,3),(35,26)\}\right.
$$

$$
P+E Q=(11,10) \quad 2 P=(35,11)
$$

A Finite Field Example

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Over \mathbb{F}_{p} geometric pictures don't make sense.

Example

$$
\begin{gathered}
\text { Let } E: y^{2}=x^{3}-5 x+8 / \mathbb{F}_{37}, \quad P=(6,3), Q=(9,10) \in E\left(\mathbb{F}_{37}\right) \\
r_{P, Q}: y=27 x+26 \quad r_{P, P}: y=11 x+11
\end{gathered}
$$

$$
\begin{gathered}
P+{ }_{E} Q=(11,10) \quad 2 P=(35,11) \\
3 P=(34,25), 4 P=(8,6), 5 P=(16,19), \ldots 3 P+4 Q=(31,28),
\end{gathered}
$$

Introduction

History
length of ellipses why Elliptic curves?

$$
r_{P, Q} \cap E\left(\mathbb{F}_{37}\right)=\left\{\begin{array}{l}
y^{2}=x^{3}-5 x+8 \\
y=27 x+26
\end{array}=\{(6,3),(9,10),(11,27)\}\right.
$$ Fields

Weierstraß Equations
Singular points The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$

$$
r_{P, P} \cap E\left(\mathbb{F}_{37}\right)=\left\{\begin{array}{l}
y^{2}=x^{3}-5 x+8 \\
y=11 x+11
\end{array}=\{(6,3),(6,3),(35,26)\}\right.
$$

Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Exercise

Compute the order and the Group Structure of $E\left(\mathbb{F}_{37}\right)$

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_{1}, \ldots, n_{k} \in \mathbb{N}^{>1}$ such that
(1) $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$

Furthermore n_{1}, \ldots, n_{k} (Group Structure) are unique

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_{1}, \ldots, n_{k} \in \mathbb{N}^{>1}$ such that
(1) $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$
(2) $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$

Furthermore n_{1}, \ldots, n_{k} (Group Structure) are unique
Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_{1}, \ldots, n_{k} \in \mathbb{N}^{>1}$ such that
(1) $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$
(2) $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$

Furthermore n_{1}, \ldots, n_{k} (Group Structure) are unique
Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_{1}, \ldots, n_{k} \in \mathbb{N}^{>1}$ such that
(1) $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$
(2) $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$

Furthermore n_{1}, \ldots, n_{k} (Group Structure) are unique

Example (One can verify that:)

$$
C_{2400} \oplus C_{72} \oplus C_{1440} \cong C_{12} \oplus C_{60} \oplus C_{15200}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_{1}, \ldots, n_{k} \in \mathbb{N}^{>1}$ such that
(1) $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$
(2) $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$

Furthermore n_{1}, \ldots, n_{k} (Group Structure) are unique

Example (One can verify that:)

$$
C_{2400} \oplus C_{72} \oplus C_{1440} \cong C_{12} \oplus C_{60} \oplus C_{15200}
$$

Shall show Wednesday that

$$
E\left(\mathbb{F}_{q}\right) \cong C_{n} \oplus C_{n k} \quad \exists n, k \in \mathbb{N}^{>0}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates The sum of points

Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, $\exists n_{1}, \ldots, n_{k} \in \mathbb{N}^{>1}$ such that
(1) $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$
(2) $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$

Furthermore n_{1}, \ldots, n_{k} (Group Structure) are unique

Example (One can verify that:)

$$
C_{2400} \oplus C_{72} \oplus C_{1440} \cong C_{12} \oplus C_{60} \oplus C_{15200}
$$

Shall show Wednesday that

(i.e. $E\left(\mathbb{F}_{q}\right)$ is either cyclic $(n=1)$ or the product of 2 cyclic groups)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Proof of the associativity

$$
P+E(Q+E R)=(P+E Q)+E R \quad \forall P, Q, R \in E
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates

The sum of points

Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Proof of the associativity

$$
P+E(Q+E R)=(P+E Q)+E R \quad \forall P, Q, R \in E
$$

We should verify the above in many different cases according if $Q=R, P=Q, P=Q+_{E} R, \ldots$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

Proof of the associativity

$$
P+_{E}(Q+E R)=\left(P+_{E} Q\right)+_{E} R \quad \forall P, Q, R \in E
$$

We should verify the above in many different cases according if $Q=R, P=Q, P=Q+_{E} R, \ldots$
Here we deal with the generic case. i.e. All the points $\pm P, \pm R, \pm Q, \pm\left(Q+_{E} R\right), \pm\left(P{ }_{E} Q\right), \infty$ all different

```
Mathematica code
L[x_, y_, r_, s_]:= (s-y) / (r-x);
M[x_, y_, r_, s_]:=(yr-sx)/(r-x);
A[{x-, y_},{\mp@subsup{r}{-}{\prime},\mp@subsup{s}{-}{\prime}}]:={(L[x,y,r,s])}\mp@subsup{}{}{2}-(x+r)
    -(L[x,y,r,s])}\mp@subsup{}{}{+}+L[x,y,r,s](x+r)-M[x,y,r,s]
Together[A[A[{x,y},{u,v}],{h,k}]-A[{x,y},A[{u,v},{h,k}]]]
```



```
PolynomialQ[Together[Numerator[Factor[res[[1]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{},\mp@subsup{\textrm{y}}{3}{}}]
PolynomialQ[Together[Numerator[Factor[res[[2]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{},\mp@subsup{\textrm{y}}{3}{}}]
```

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity

Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Proof of the associativity

$$
P+_{E}(Q+E R)=\left(P+_{E} Q\right)+_{E} R \quad \forall P, Q, R \in E
$$

We should verify the above in many different cases according if $Q=R, P=Q, P=Q+_{E} R, \ldots$
Here we deal with the generic case. i.e. All the points $\pm P, \pm R, \pm Q, \pm\left(Q+_{E} R\right), \pm\left(P{ }_{E} Q\right), \infty$ all different

```
Mathematica code
L[x_, y_, r_, s_]:= (s-y) / (r-x);
M[x_, y_, r_, s_]:= (yr-sx)/(r-x);
A[{\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}},{\mp@subsup{r}{-}{\prime},\mp@subsup{s}{-}{\prime}}]:={(L[x,y,r,s])}\mp@subsup{}{}{2}-(x+r)
    -(L[x,y,r,s])3+L[x,y,r,s](x+r)-M[x,y,r,s]}
Together[A[A[{x,y},{u,v}],{h,k}]-A[{x,y},A[{u,v},{h,k}]]]
```



```
PolynomialQ[Together[Numerator[Factor[res[[1]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{},\mp@subsup{\textrm{y}}{3}{}}]
PolynomialQ[Together[Numerator[Factor[res[[2]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{},\mp@subsup{\textrm{y}}{3}{}}]
```

- runs in 2 seconds on a PC

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Proof of the associativity

$$
P+E(Q+E R)=(P+E Q)+E R \quad \forall P, Q, R \in E
$$

We should verify the above in many different cases according if $Q=R, P=Q, P=Q+_{E} R, \ldots$
Here we deal with the generic case. i.e. All the points $\pm P, \pm R, \pm Q, \pm\left(Q+_{E} R\right), \pm\left(P+_{E} Q\right), \infty$ all different

```
Mathematica code
L[\mp@subsup{x}{_}{\prime},\mp@subsup{y}{-}{\prime},\mp@subsup{r}{_}{\prime},\mp@subsup{s}{-}{\prime}]:=(s-y)/(r-x);
M[x_, y_, r_, s_]:= (yr-sx)/(r-x);
A[{\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}},{\mp@subsup{r}{-}{\prime},\mp@subsup{s}{-}{\prime}}]:={(L[x,y,r,s])}\mp@subsup{}{}{2}-(x+r)
    -(L[x,y,r,s])}\mp@subsup{}{}{+}+L[x,y,r,s](x+r)-M[x,y,r,s]
Together[A[A[{x,y},{u,v}],{h,k}]-A[{x,y},A[{u,v},{h,k}]]]
det = Det [({{1, x1, x < - y y } },{1, x 2, x2
PolynomialQ[Together[Numerator[Factor[res[[1]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{},\mp@subsup{\textrm{y}}{3}{}}]
PolynomialQ[Together[Numerator[Factor[res[[2]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{},\mp@subsup{\textrm{y}}{3}{}}]
```

- runs in 2 seconds on a PC
- For an elementary proof:
"An Elementary Proof of the Group Law for Elliptic Curves." Department of Mathematics: Rice University. Web. 20 Nov. 2009.
http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF

Proof of the associativity

$$
P+E(Q+E R)=(P+E Q)+E R \quad \forall P, Q, R \in E
$$

We should verify the above in many different cases according if $Q=R, P=Q, P=Q+_{E} R, \ldots$
Here we deal with the generic case. i.e. All the points $\pm P, \pm R, \pm Q, \pm\left(Q+_{E} R\right), \pm\left(P{ }_{E} Q\right), \infty$ all different

```
Mathematica code
L[x_, Y_, r_, s_] := (s-y) / (r-x);
M[x_, Y_, r_, s__]:=(yr-sx)/(r-x);
A[{x_, Y_},{r_, s_}]:={(L[x,y,r,s]) '
    -(L[x,y,r,s])}\mp@subsup{}{}{3}+L[x,y,r,s](x+r)-M[x,y,r,s]
Together[A[A[{x,y},{u,v}],{h,k}]-A[{x,y},A[{u,v},{h,k}]]]
```



```
PolynomialQ[Together[Numerator[Factor[res[[1]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{Y}}{1}{},\mp@subsup{\textrm{Y}}{2}{},\mp@subsup{\textrm{Y}}{3}{}}]
PolynomialQ[Together[Numerator[Factor[res[[2]]]]/det],
    {\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{3}{},\mp@subsup{\textrm{Y}}{1}{},\mp@subsup{\textrm{Y}}{2}{},\mp@subsup{\textrm{Y}}{3}{}}]
```

- runs in 2 seconds on a PC
- For an elementary proof:
"An Elementary Proof of the Group Law for Elliptic Curves." Department of Mathematics: Rice University. Web. 20 Nov. 2009.
http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF
- More cases to check. e.g $P+{ }_{E} 2 Q=\left(P+_{E} Q\right)+{ }_{E} Q$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History

length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{2}

From our previous list:

Groups of points

E	$E\left(\mathbb{F}_{2}\right)$	$\left\|E\left(\mathbb{F}_{2}\right)\right\|$
$y^{2}+x y=x^{3}+x^{2}+1$	$\{\infty,(0,1)\}$	2
$y^{2}+x y=x^{3}+1$	$\{\infty,(0,1),(1,0),(1,1)\}$	4
$y^{2}+y=x^{3}+x$	$\{\infty,(0,0),(0,1)$,	
$y^{2}+y=x^{3}+x+1$	$(1,0),(1,1)\}$	
$y^{2}+y=x^{3}$	$\{\infty\}$	5

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{2}

From our previous list:
Groups of points

E	$E\left(\mathbb{F}_{2}\right)$	$\left\|E\left(\mathbb{F}_{2}\right)\right\|$
$y^{2}+x y=x^{3}+x^{2}+1$	$\{\infty,(0,1)\}$	2
$y^{2}+x y=x^{3}+1$	$\{\infty,(0,1),(1,0),(1,1)\}$	4
$y^{2}+y=x^{3}+x$	$\{\infty,(0,0),(0,1)$,	
	$(1,0),(1,1)\}$	
$y^{2}+y=x^{3}+x+1$	$\{\infty\}$	5
$y^{2}+y=x^{3}$	$\{\infty,(0,0),(0,1)\}$	3

So for each curve $E\left(\mathbb{F}_{2}\right)$ is cyclic except possibly for the second for which we need to distinguish between C_{4} and $C_{2} \oplus C_{2}$.

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{2}

From our previous list:
Groups of points

E	$E\left(\mathbb{F}_{2}\right)$	$\left\|E\left(\mathbb{F}_{2}\right)\right\|$
$y^{2}+x y=x^{3}+x^{2}+1$	$\{\infty,(0,1)\}$	2
$y^{2}+x y=x^{3}+1$	$\{\infty,(0,1),(1,0),(1,1)\}$	4
$y^{2}+y=x^{3}+x$	$\{\infty,(0,0),(0,1)$,	
	$(1,0),(1,1)\}$	
$y^{2}+y=x^{3}+x+1$	$\{\infty\}$	5
$y^{2}+y=x^{3}$	$\{\infty,(0,0),(0,1)\}$	3

So for each curve $E\left(\mathbb{F}_{2}\right)$ is cyclic except possibly for the second for which we need to distinguish between C_{4} and $C_{2} \oplus C_{2}$.

Note: each $C_{i}, i=1, \ldots, 5$ is represented by a curve $/ \mathbb{F}_{2}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials
Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{3}

From our previous list:

Groups of points

i	E_{i}	$E_{i}\left(\mathbb{F}_{3}\right)$	$\left\|E_{i}\left(\mathbb{F}_{3}\right)\right\|$
1	$y^{2}=x^{3}+x$	$\{\infty,(0,0),(2,1),(2,2)\}$	4
2	$y^{2}=x^{3}-x$	$\{\infty,(1,0),(2,0),(0,0)\}$	4
3	$y^{2}=x^{3}-x+1$	$\{\infty,(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)\}$	7
4	$y^{2}=x^{3}-x-1$	$\{\infty\}$	1
5	$y^{2}=x^{3}+x^{2}-1$	$\{\infty,(1,1),(1,2)\}$	3
6	$y^{2}=x^{3}+x^{2}+1$	$\{\infty,(0,1),(0,2),(1,0),(2,1),(2,2)\}$	6
7	$y^{2}=x^{3}-x^{2}+1$	$\{\infty,(0,1),(0,2),(1,1),(1,2)\}$,	5
8	$y^{2}=x^{3}-x^{2}-1$	$\{\infty,(2,0))\}$	2

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$

EXAMPLE: Elliptic curves over \mathbb{F}_{3}

From our previous list:

Groups of points

i	E_{i}	$E_{i}\left(\mathbb{F}_{3}\right)$	$\left\|E_{i}\left(\mathbb{F}_{3}\right)\right\|$
1	$y^{2}=x^{3}+x$	$\{\infty,(0,0),(2,1),(2,2)\}$	4
2	$y^{2}=x^{3}-x$	$\{\infty,(1,0),(2,0),(0,0)\}$	4
3	$y^{2}=x^{3}-x+1$	$\{\infty,(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)\}$	7
4	$y^{2}=x^{3}-x-1$	$\{\infty\}$	1
5	$y^{2}=x^{3}+x^{2}-1$	$\{\infty,(1,1),(1,2)\}$	3
6	$y^{2}=x^{3}+x^{2}+1$	$\{\infty,(0,1),(0,2),(1),,(2,1),(2,2)\}$	6
7	$y^{2}=x^{3}-x^{2}+1$	$\{\infty,(0,1),(0,2),(1,1),(1,2)\}$,	5
8	$y^{2}=x^{3}-x^{2}-1$	$\{\infty,(2,0))\}$	2

Each $E_{i}\left(\mathbb{F}_{3}\right)$ is cyclic except possibly for $E_{1}\left(\mathbb{F}_{3}\right)$ and $E_{2}\left(\mathbb{F}_{3}\right)$ that could be either C_{4} or $C_{2} \oplus C_{2}$. We shall see that:

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$

EXAMPLE: Elliptic curves over \mathbb{F}_{3}

From our previous list:
Groups of points

i	E_{i}	$E_{i}\left(\mathbb{F}_{3}\right)$	$\left\|E_{i}\left(\mathbb{F}_{3}\right)\right\|$
1	$y^{2}=x^{3}+x$	$\{\infty,(0,0),(2,1),(2,2)\}$	4
2	$y^{2}=x^{3}-x$	$\{\infty,(1,0),(2,0),(0,0)\}$	4
3	$y^{2}=x^{3}-x+1$	$\{\infty,(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)\}$	7
4	$y^{2}=x^{3}-x-1$	$\{\infty\}$	1
5	$y^{2}=x^{3}+x^{2}-1$	$\{\infty,(1,1),(1,2)\}$	3
6	$y^{2}=x^{3}+x^{2}+1$	$\{\infty,(0,1),(0,2),(1),,(2,1),(2,2)\}$	6
7	$y^{2}=x^{3}-x^{2}+1$	$\{\infty,(0,1),(0,2),(1,1),(1,2)\}$,	5
8	$y^{2}=x^{3}-x^{2}-1$	$\{\infty,(2,0))\}$	2

Each $E_{i}\left(\mathbb{F}_{3}\right)$ is cyclic except possibly for $E_{1}\left(\mathbb{F}_{3}\right)$ and $E_{2}\left(\mathbb{F}_{3}\right)$ that could be either C_{4} or $C_{2} \oplus C_{2}$. We shall see that:

$$
E_{1}\left(\mathbb{F}_{3}\right) \cong C_{4} \quad \text { and } \quad E_{2}\left(\mathbb{F}_{3}\right) \cong C_{2} \oplus C_{2}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$

EXAMPLE: Elliptic curves over \mathbb{F}_{3}

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$

$$
E_{1}\left(\mathbb{F}_{3}\right) \cong C_{4} \quad \text { and } \quad E_{2}\left(\mathbb{F}_{3}\right) \cong C_{2} \oplus C_{2}
$$

Note: each $C_{i}, i=1, \ldots, 7$ is represented by a curve $/ \mathbb{F}_{3}$

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2$

Introduction

History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4}
$\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2$

$$
\left\{\begin{array}{l}
x \longleftarrow 2 x \\
y \longleftarrow \sqrt{3} y
\end{array}\right.
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2 \quad$ both order 6

$$
\left\{\begin{array}{l}
x \longleftarrow 2 x \\
y \longleftarrow \sqrt{3} y
\end{array}\right.
$$

E_{1} and E_{2} affinely equivalent
over $\mathbb{F}_{5}[\sqrt{3}]=\mathbb{F}_{25}$ (twists)

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2 \quad$ both order 6

$$
\left\{\begin{array}{l}
x \longleftarrow 2 x \\
y \longleftarrow \sqrt{3} y
\end{array}\right.
$$

E_{1} and E_{2} affinely equivalent
over $\mathbb{F}_{5}[\sqrt{3}]=\mathbb{F}_{25}$ (twists)

- $E_{3}: y^{2}=x^{3}+x$ and $E_{4}: y^{2}=x^{3}+x+2$

$$
E_{3}\left(\mathbb{F}_{5}\right) \cong C_{2} \oplus C_{2} \quad E_{4}\left(\mathbb{F}_{5}\right) \cong C_{4}
$$

- $E_{5}: y^{2}=x^{3}+4 x$ and $E_{6}: y^{2}=x^{3}+4 x+1$ both order 8

$$
E_{5}\left(\mathbb{F}_{5}\right) \cong C_{2} \times \oplus C_{4} \quad E_{6}\left(\mathbb{F}_{5}\right) \cong C_{8}
$$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(\mathrm{~F}_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2 \quad$ both order 6

$$
\left\{\begin{array}{l}
x \longleftarrow 2 x \\
y \longleftarrow \sqrt{3} y
\end{array}\right.
$$

E_{1} and E_{2} affinely equivalent
over $\mathbb{F}_{5}[\sqrt{3}]=\mathbb{F}_{25}$ (twists)

- $E_{3}: y^{2}=x^{3}+x$ and $E_{4}: y^{2}=x^{3}+x+2$
order 4

$$
E_{3}\left(\mathbb{F}_{5}\right) \cong C_{2} \oplus C_{2} \quad E_{4}\left(\mathbb{F}_{5}\right) \cong C_{4}
$$

- $E_{5}: y^{2}=x^{3}+4 x$ and $E_{6}: y^{2}=x^{3}+4 x+1$ both order 8

$$
E_{5}\left(\mathbb{F}_{5}\right) \cong C_{2} \times \oplus C_{4} \quad E_{6}\left(\mathbb{F}_{5}\right) \cong C_{8}
$$

- $E_{7}: y^{2}=x^{3}+x+1$
order 9 and $E_{7}\left(\mathbb{F}_{5}\right) \cong C_{9}$

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2 \quad$ both order 6
$\left\{\begin{array}{l}x \longleftarrow 2 x \\ y \longleftarrow \sqrt{3} y\end{array}\right.$
E_{1} and E_{2} affinely equivalent
over $\mathbb{F}_{5}[\sqrt{3}]=\mathbb{F}_{25}$ (twists)
- $E_{3}: y^{2}=x^{3}+x$ and $E_{4}: y^{2}=x^{3}+x+2$
order 4

$$
E_{3}\left(\mathbb{F}_{5}\right) \cong C_{2} \oplus C_{2} \quad E_{4}\left(\mathbb{F}_{5}\right) \cong C_{4}
$$

- $E_{5}: y^{2}=x^{3}+4 x$ and $E_{6}: y^{2}=x^{3}+4 x+1$ both order 8

$$
E_{5}\left(\mathbb{F}_{5}\right) \cong C_{2} \times \oplus C_{4} \quad E_{6}\left(\mathbb{F}_{5}\right) \cong C_{8}
$$

- $E_{7}: y^{2}=x^{3}+x+1$
order 9 and $E_{7}\left(\mathbb{F}_{5}\right) \cong C_{9}$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction
History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(F_{2}\right)$
Structure of $E\left(\mathrm{~F}_{3}\right)$
Further Examples

EXAMPLE: Elliptic curves over \mathbb{F}_{5} and \mathbb{F}_{4} $\forall E / \mathbb{F}_{5}$ (12 elliptic curves), $\# E\left(\mathbb{F}_{5}\right) \in\{2,3,4,5,6,7,8,9,10\}$. $\forall n, 2 \leq n \leq 10 \exists!E / \mathbb{F}_{5}: \# E\left(\mathbb{F}_{5}\right)=n$ with the exceptions:

Example (Elliptic curves over \mathbb{F}_{5})

- $E_{1}: y^{2}=x^{3}+1$ and $E_{2}: y^{2}=x^{3}+2$
both order 6

$$
\left\{\begin{array}{l}
x \longleftarrow 2 x \\
y \longleftarrow \sqrt{3} y
\end{array}\right.
$$

E_{1} and E_{2} affinely equivalent over $\mathbb{F}_{5}[\sqrt{3}]=\mathbb{F}_{25}$ (twists)

- $E_{3}: y^{2}=x^{3}+x$ and $E_{4}: y^{2}=x^{3}+x+2$
order 4

$$
E_{3}\left(\mathbb{F}_{5}\right) \cong C_{2} \oplus C_{2} \quad E_{4}\left(\mathbb{F}_{5}\right) \cong C_{4}
$$

- $E_{5}: y^{2}=x^{3}+4 x$ and $E_{6}: y^{2}=x^{3}+4 x+1$ both order 8

$$
E_{5}\left(\mathbb{F}_{5}\right) \cong C_{2} \times \oplus C_{4} \quad E_{6}\left(\mathbb{F}_{5}\right) \cong C_{8}
$$

- $E_{7}: y^{2}=x^{3}+x+1$
order 9 and $E_{7}\left(\mathbb{F}_{5}\right) \cong C_{9}$
Exercise: Classify all elliptic curves over $\mathbb{F}_{4}=\mathbb{F}_{2}[\xi], \xi^{2}=\xi+1$

Elliptic curves over \mathbb{F}_{q}
F. Pappalardi

Introduction

History

length of ellipses why Elliptic curves? Fields

Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity Homogeneous Coordinates
The sum of points

Examples

Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

Further Reading...

Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, Advances in elliptic curve cryptography, London Mathematical Society Lecture Note Series, vol. 317, Cambridge University Press, Cambridge, 2005.
J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991.

John E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997.

Anthony W. Knapp, Elliptic curves, Mathematical Notes, vol. 40, Princeton University Press, Princeton, NJ, 1992.

Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984.

Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.
Joseph H. Silverman and John Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.

Lawrence C. Washington, Elliptic curves: Number theory and cryptography, 2nd ED. Discrete Mathematics and Its Applications, Chapman \& Hall/CRC, 2008.

Horst G. Zimmer, Computational aspects of the theory of elliptic curves, Number theory and applications (Banff, AB, 1988) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 279-324.
F. Pappalardi

Introduction

History
length of ellipses
why Elliptic curves?
Fields
Weierstraß Equations
Singular points
The Discriminant
Elliptic curves $/ \mathbb{F}_{2}$
Elliptic curves $/ \mathbb{F}_{3}$
Point at infinity of E
Projective Plane
Homogeneous Polynomials Points at infinity
Homogeneous Coordinates
The sum of points
Examples
Structure of $E\left(F_{2}\right)$
Structure of $E\left(F_{3}\right)$
Further Examples

