10

11

12

13

14

15

16

17

18

Universita degli Studi Roma Tre - Dipartimento di Matematica e Fisica — Corso di Laurea in Matematica

Corso di Algoritmi e Strutture Dati (IN110) — Prof. Marco Liverani — a.a. 2025/2026

Seconda prova di esonero — 14 gennaio 2026

Risolvere i seguenti problemi proponendo, per ciascun esercizio, la codifica in linguaggio C di un programma
completo. La prova dura tre ore, durante le quali non é possibile allontanarsi dall’aula, se non dopo aver
consegnato Uelaborato scritto. Per superare la prova di esonero é necessario ottenere almeno 15 punti; tuttavia
affinché le prove di esonero siano valide é necessario che la media dei voti del primo e del secondo esonero sia
maggiore o uguale a 18/30. E possibile utilizzare libri e appunti personali, senza scambiarli con altri studenti;
non é consentito l'uso di strumenti digitali (computer, tablet, smartphone, ecc.). I compiti che presenteranno
evidenti ed anomale “similitudini” saranno annullati.

Esercizio n. 1

Letto in input un intero n > 0 generare una lista di numeri interi casuali compresi in {17,...,42}.
Visualizzare in output la lista. Eliminare dalla lista tutti gli elementi ripetuti, quindi visualizzare
la lista modificata.

Esempio Sian=1lesial =22—-31—->20—-22—-530—-31 —>42—>17 - 16 - 31 —
17 — null una lista di numeri casuali prodotta dal programma. La lista viene cosi modificata:
L=22—-31—-20—30—42— 17— 16 — null

Soluzione

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define MAX 100

struct nodo {
int info;
struct nodo *next;

}s

void stampalista(struct nodo *p) {
while (p != NULL) {
printf("%d --> ", p->info);
p = p->hext;
}
printf("NULL\n");
return;

}




19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

struct nodo *listaCasuale(void) {
struct nodo *p, *primo = NULL;
int n, i;
srand((unsigned) time (NULL));
printf("Numero di elementi: ");
scanf("%d", &n);
for (i = 0; i<n; i++) {
p = malloc(sizeof(struct nodo));
p->info = rand() % (42-17+1) + 17;
p->next = primo;
primo = p;
}
return primo;

}

void modificalLista(struct nodo *primo)

struct nodo *p, *q, *r;
p = primo;
while (p->next != NULL) {

g = p->hext;

r = p;

while (q != NULL) {

if (gq->info == p->info) {
r->next = g->next;

free(q);
q = r->next;
} else {
r=4d;
g = gq->nhext;
}
3
P = p—>next;
3
return;

}

int main(void) {
struct nodo *p;
p = listaCasuale();
stampalLista(p);
modificalLista(p);
stampalista(p);
return 0;




10

11

12

13

14

15

16

17

18

19

20

21

22

23

Esercizio n. 2

Lette in input le liste di adiacenza di due grafi non orientati con n vertici, G; = (V,E;) e Gy =
(V,E,), costruire le liste di adiacenza del grafo G3 = (V,E; N E,). Stampare le liste di adiacenza
di G;.

Esempio Si considerino i grafi G;, G, e G5 rappresentati in figura. Gli spigoli in comune tra
i grafi G; e G, sono E; N Ey = {(vq1,V4), (Va,Vs5),(Vo,v3),(v3,v4)}. Di conseguenza il grafo G
prodotto dal programma € quello rappresentato in figura.

G1 Yo G2 Yo G3 Yo
°
1)5 U1 05 Ul U5 l}1
Uy ) Yy Uy Uy Uy
U.3 U3 U%
Soluzione

#include <stdlib.h>
#include <stdio.h>
#define MAX 100

struct nodo {
int info;
struct nodo *next;

}s

void stampalista(struct nodo *p) {
while (p != NULL) {
printf("%d --> ", p->info);
p = p->hext;

}
printf("NULL\n");
return;
}
void stampaGrafo(struct nodo *G[], int n) {
int i;
for (i=0; i<n; i++) {
printf("%2d: ", i);
stampalista(G[i]);




24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

)

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

return;

struct nodo *leggilista() {
struct nodo *p, *primo = NULL;
int i, n;
printf("Numero di elementi: ");
scanf("%d", &n);
printf("Elementi della lista: ");
for (i=0; i<n; i++) {
p = malloc(sizeof(struct nodo));
scanf("%d", &p->info);
p->next = primo;
primo = p;
3
return primo;

}

int leggiGrafo(struct nodo *G[]) {

int i, n;

printf("Numero di vertici del grafo: ");

scanf("%d", &n);

for (i=0; i<n; i++) {
printf("Lista di adiacenza del vertice %d\n", i);
G[i] = leggilistaQ);

}

return(n);

}

int adiacente(struct nodo *G[], int u, int v) {
int r = 0;
struct nodo *p;
p = G[ul;
while (p !'= NULL && p->info != v) {
p = p—>next ’
}
if (p != NULL)
r = 1;
return r;

void aggiungiSpigolo(struct nodo *G[], int u, int v) {
struct nodo *p;
p = malloc(sizeof(struct nodo));
p->info = v;
p->next = G[u];




71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

G[ul = p;
return;

}

int main(void) {
struct nodo *G1[MAX], *G2[MAX], *G3[MAX], *p;;
int i, n;
printf("\nGrafo G1l:\n");
n = leggiGrafo(Gl);
printf("\nGrafo G2:\n");
n = leggiGrafo(G2);
for (i=0; i<n; i++)
G3[i] = NULL;
for (i=0; i<n; i++) {
p = Gl[i];
while (p != NULL) {
if (adiacente(G2, i, p->info))
aggiungiSpigolo(G3, i, p->info);
p = p->next;
}
3
printf("\nGrafo G3:\n");
stampaGrafo(G3, n);
return 0;




