Algoritmi e Strutture Dati (IN110)
Esercitazione n. 11

Marco Liverani *

Esercizio n. 1

Letto in input un grafo non orientato G = (V, E) con n vertici (V ={0,1,2,...,n—1}) e una lista di numeri
interi compresi tra 0 e n — 1, verificare se la lista rappresenta un cammino sul grafo.

20

21

22

23

24

25

27

28

29

30

Codifica in linguaggio C

#include <stdlib.h>
#include <stdio.h>
#define MAX 100

struct nodo {
int info;
struct nodo *next;

1

struct nodo *leggi_lista(void) {
struct nodo *p, *primo=NULL;
int i, n;
printf("Numero di elementi: ");
scanf("%d", &n);
printf("Inserisci %d vertici:
for (i=0; i<n; i++) {
p = malloc(sizeof(struct nodo));
scanf("%d", &p->info);
p->next = primo;
primo = p;
}
return(primo) ;

}

, n);

void stampa_lista(struct nodo *p) {
while (p !'= NULL) {
printf("%d ---> ", p->info);
p = p->next;
}
printf("NULL\n");

*Universita degli Studi Roma Tre, Corso di Laurea in Matematica, Corso di Algoritmi e Strutture Dati (IN110) — sito web del

corso http://www.mat.uniromas3.it/users/liverani/IN110/




31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

return;

}

int leggi_grafo(struct nodo *L[]) {

int i, n;

printf("Numero di vertici del grafo: ");

scanf("%d", &n);

for (i=0; i<n; i++) {
printf("Lista dei vertici adiacenti al vertice %d.\n", i);
L[i] = leggi_lista(Q);

}

return(n);

}

void stampa_grafo(struct nodo *L[], int n) {
int i;
printf("Liste di adiacenza dei vertici del grafo:\n");
for (i=0; i<n; i++) {

printf("%2d: ", i);
stampa_lista(L[i]);
}
printf("\n");
return;

}

int adiacente(struct nodo *G[], int u, int v) {
struct nodo *p;
p = G[ul;
while (p != NULL && p->info != v) {
p = p->next;
}
if (p == NULL)
return(0);
else
return(l);

}

int main(void) {
struct nodo *G[100], *primo, *p;
int n, ok=1;
n = leggi_grafo(G);
stampa_grafo(G, n);
printf("Inserimento della lista di vertici da verificare\n");
primo = leggi_lista(Q);
p = primo;
while (ok && p->next != NULL) {
if (ladiacente(G, p->info, p->next->info))
ok = 0;
P = p->hext;
}
if (ok)
printf("La lista costituisce un cammino sul grafo.\n");
else
printf("La lista non rappresenta un cammino sul grafo.\n");




8 return(0);
86 }




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Esercizio n. 2

Leggere in input k liste di numeri interi e costruire un grafo non orientato G = (V, E) per cui le k liste

rappresentino dei cammini.

Codifica in linguaggio C

#include <stdlib.h>
#include <stdio.h>
#define MAX 100

struct nodo {
int info;
struct nodo *next;

1

struct nodo *leggi_lista(void) {
struct nodo *p, *primo=NULL;
int i, n;
printf("Numero di elementi: ");
scanf("%d", &n);
printf("Inserisci %d vertici:
for (i=0; i<n; i++) {
p = malloc(sizeof(struct nodo));
scanf("%d", &p->info);
p->next = primo;
primo = p;
}
return(primo) ;

}

, n);

void stampa_lista(struct nodo *p) {
while (p !'= NULL) {
printf("%d ---> ", p->info);
p = p->next;
}
printf("NULL\n");
return;

}

int leggi_grafo(struct nodo *L[]) {

int i, n;

printf("Numero di vertici del grafo: ");

scanf("%d", &n);

for (i=0; i<n; i++) {
printf("Lista dei vertici adiacenti al vertice %d.\n", i);
L[i] = leggi_lista(Q);

}

return(n);

}

void stampa_grafo(struct nodo *L[], int n) {
int i;




47

48

49

50

51

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

printf("Liste di adiacenza dei vertici del grafo:\n");
for (i=0; i<n; i++) {

printf("%2d: ", i);
stampa_lista(L[i]);
}
printf("\n");
return;

}

int main(void) {
struct nodo *L[100], *G[100], *p, *q;
int i, n=0, k;
for (i=0; i<100; i++)
G[i] = NULL;
printf("Quante liste vuoi inserire? ");
scanf("%d", &k);
for (i=0; i<k; i++)
L[i] = leggi_lista(Q);
for (i=0; i<k; i++) {
p = L[il;
if (n < p->info)
n = p->info;
while (p->next != NULL) {
if (n < p->next->info)
n = p->next->info;
g = G[p->info];
while (g != NULL && g->info != p->next->info) {
q = g->hext;
}
if (q == NULL) {
g = malloc(sizeof(struct nodo));
g->info = p->next->info;
g->next = G[p->info];
G[p->info] = q;

}
p = p->next;
}
}
stampa_grafo(G, n+l1);
return(0);

}




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Esercizio n. 3

Letti in input due interi n e k (0 < k < n), costruire un grafo orientato G = (V, E) in modo casuale tale
che V={0,1,2,...,n—1} e ogni vertice abbia al massimo k spigoli uscenti.

Codifica in linguaggio C

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

struct nodo {
int info;
struct nodo *next;

1

void stampa_lista(struct nodo *p) {
while (p != NULL) {
printf("%d ---> ", p->info);
p = p->next;
}
printf£("NULL\n");
return;

}

void stampa_grafo(struct nodo *L[], int n) {
int i;
printf("Liste di adiacenza dei vertici del grafo:\n");
for (i=0; i<n; i++) {

printf("%2d: ", 1);
stampa_lista(L[i]);
}
printf("\n");
return;

}

void crea_grafo(struct nodo *G[], int n, int k) {
struct nodo *p;
int i, j, x;
srand ((unsigned) time (NULL)) ;
for (i=0; i<n; i++) {
G[i] = NULL;
for (j=0; j<k; j++) {
x = rand() % n;
if (x I1=1) {
p = G[i];
while (p != NULL && p->info != x) {
p = p->next;
}
if (p == NULL) {
p = malloc(sizeof(struct nodo));
p->info = x;
p->next = G[i];




47

48

49

50

51

53

54

55

56

58

59

60

61

62

63

64

65

}

return;

int main(void) {

struct nodo *G[100];

int n, k;

printf("Numero di vertici: ");
scanf("%d", &n);

printf("Grado uscente massimo: ");
scanf("%d", &k);

crea_grafo(G, n, k);
stampa_grafo(G, n);

return(0);




