
Università degli Studi Roma Tre – Dipartimento di Matematica e Fisica – Corso di Laurea in Matematica

Corso di Algoritmi e Strutture Dati (IN110) – Prof. Marco Liverani – a.a. 2025/2026

Seconda prova di esonero – 14 gennaio 2026

Risolvere i seguenti problemi proponendo, per ciascun esercizio, la codifica in linguaggio C di un programma
completo. La prova dura tre ore, durante le quali non è possibile allontanarsi dall’aula, se non dopo aver
consegnato l’elaborato scritto. Per superare la prova di esonero è necessario ottenere almeno 15 punti; tuttavia
affinché le prove di esonero siano valide è necessario che la media dei voti del primo e del secondo esonero sia
maggiore o uguale a 18/30. È possibile utilizzare libri e appunti personali, senza scambiarli con altri studenti;
non è consentito l’uso di strumenti digitali (computer, tablet, smartphone, ecc.). I compiti che presenteranno
evidenti ed anomale “similitudini” saranno annullati.

Esercizio n. 1

Letto in input un intero n> 0 generare una lista di numeri interi casuali compresi in {17, . . . , 42}.
Visualizzare in output la lista. Eliminare dalla lista tutti gli elementi ripetuti, quindi visualizzare
la lista modificata.

Esempio Sia n = 11 e sia L = 22 → 31 → 20 → 22 → 30 → 31 → 42 → 17 → 16 → 31 →
17 → null una lista di numeri casuali prodotta dal programma. La lista viene così modificata:
L = 22→ 31→ 20→ 30→ 42→ 17→ 16→ null

Soluzione� �
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <time.h>
4 #define MAX 100
5

6 struct nodo {
7 int info;
8 struct nodo *next;
9 };

10

11 void stampaLista(struct nodo *p) {
12 while (p != NULL) {
13 printf("%d --> ", p->info);
14 p = p->next;
15 }
16 printf("NULL\n");
17 return;
18 }



19

20 struct nodo *listaCasuale(void) {
21 struct nodo *p, *primo = NULL;
22 int n, i;
23 srand((unsigned)time(NULL));
24 printf("Numero di elementi: ");
25 scanf("%d", &n);
26 for (i = 0; i<n; i++) {
27 p = malloc(sizeof(struct nodo));
28 p->info = rand() % (42-17+1) + 17;
29 p->next = primo;
30 primo = p;
31 }
32 return primo;
33 }
34

35 void modificaLista(struct nodo *primo) {
36 struct nodo *p, *q, *r;
37 p = primo;
38 while (p->next != NULL) {
39 q = p->next;
40 r = p;
41 while (q != NULL) {
42 if (q->info == p->info) {
43 r->next = q->next;
44 free(q);
45 q = r->next;
46 } else {
47 r = q;
48 q = q->next;
49 }
50 }
51 p = p->next;
52 }
53 return;
54 }
55

56 int main(void) {
57 struct nodo *p;
58 p = listaCasuale();
59 stampaLista(p);
60 modificaLista(p);
61 stampaLista(p);
62 return 0;
63 }� �

2



Esercizio n. 2

Lette in input le liste di adiacenza di due grafi non orientati con n vertici, G1 = (V, E1) e G2 =
(V, E2), costruire le liste di adiacenza del grafo G3 = (V, E1 ∩ E2). Stampare le liste di adiacenza
di G3.

Esempio Si considerino i grafi G1, G2 e G3 rappresentati in figura. Gli spigoli in comune tra
i grafi G1 e G2 sono E1 ∩ E2 = {(v1, v4), (v2, v5), (v2, v3), (v3, v4)}. Di conseguenza il grafo G3
prodotto dal programma è quello rappresentato in figura.

v0G1

v1

v2

v3

v4

v5

v3

v0

v1

v2v4

v5

G3v0

v1

v2

v3

v4

v5

G2

Soluzione� �
1 #include <stdlib.h>
2 #include <stdio.h>
3 #define MAX 100
4

5 struct nodo {
6 int info;
7 struct nodo *next;
8 };
9

10 void stampaLista(struct nodo *p) {
11 while (p != NULL) {
12 printf("%d --> ", p->info);
13 p = p->next;
14 }
15 printf("NULL\n");
16 return;
17 }
18

19 void stampaGrafo(struct nodo *G[], int n) {
20 int i;
21 for (i=0; i<n; i++) {
22 printf("%2d: ", i);
23 stampaLista(G[i]);

3



24 }
25 return;
26 }
27

28 struct nodo *leggiLista() {
29 struct nodo *p, *primo = NULL;
30 int i, n;
31 printf("Numero di elementi: ");
32 scanf("%d", &n);
33 printf("Elementi della lista: ");
34 for (i=0; i<n; i++) {
35 p = malloc(sizeof(struct nodo));
36 scanf("%d", &p->info);
37 p->next = primo;
38 primo = p;
39 }
40 return primo;
41 }
42

43 int leggiGrafo(struct nodo *G[]) {
44 int i, n;
45 printf("Numero di vertici del grafo: ");
46 scanf("%d", &n);
47 for (i=0; i<n; i++) {
48 printf("Lista di adiacenza del vertice %d\n", i);
49 G[i] = leggiLista();
50 }
51 return(n);
52 }
53

54 int adiacente(struct nodo *G[], int u, int v) {
55 int r = 0;
56 struct nodo *p;
57 p = G[u];
58 while (p != NULL && p->info != v) {
59 p = p->next;
60 }
61 if (p != NULL)
62 r = 1;
63 return r;
64 }
65

66 void aggiungiSpigolo(struct nodo *G[], int u, int v) {
67 struct nodo *p;
68 p = malloc(sizeof(struct nodo));
69 p->info = v;
70 p->next = G[u];

4



71 G[u] = p;
72 return;
73 }
74

75 int main(void) {
76 struct nodo *G1[MAX], *G2[MAX], *G3[MAX], *p;;
77 int i, n;
78 printf("\nGrafo G1:\n");
79 n = leggiGrafo(G1);
80 printf("\nGrafo G2:\n");
81 n = leggiGrafo(G2);
82 for (i=0; i<n; i++)
83 G3[i] = NULL;
84 for (i=0; i<n; i++) {
85 p = G1[i];
86 while (p != NULL) {
87 if (adiacente(G2, i, p->info))
88 aggiungiSpigolo(G3, i, p->info);
89 p = p->next;
90 }
91 }
92 printf("\nGrafo G3:\n");
93 stampaGrafo(G3, n);
94 return 0;
95 }� �

5


