Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005AL2 - Algebra 2, gruppi, anelli e campi Prima prova di valutazione intermedia 3 novembre 2004

Soluzione

1. Sia G l'insieme delle matrici quadrate di ordine 2 a elementi in \mathbb{Z}_8 della forma:

$$A = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$$
, con $ad = 1$.

- (a) Mostrare che G è un gruppo commutativo rispetto alla moltiplicazione righe per colonne;
- (b) Mostrare che l'applicazione

$$\varphi: G \longrightarrow \mathcal{U}(\mathbb{Z}_8)$$
 definita da $A \to a$

è un omomorfismo di gruppi;

(c) Determinare $Ker(\varphi)$ e $Im(\varphi)$ e definire l'isomorfismo canonico

$$G/Ker(\varphi) \longrightarrow Im(\varphi);$$

(d) Determinare $\varphi^{-1}(\bar{5})$.

Soluzione

Osserviamo che la relazione ad = 1 implica che

$$a \in U(\mathbb{Z}_8) = \{1, 3, 5, 7\} \cong V_4$$

Dunque a = d.

(a) Verifichiamo che G è un sottogruppo di $GL_2(\mathbb{Z}_8)$. Data $A \in G$

$$A^{-1} = \left(\begin{array}{cc} a & 0 \\ -c & a \end{array}\right) \in G$$

e per ogni $A \in B \in G$

$$AB^{-1} = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix} \begin{pmatrix} b & 0 \\ -c' & b \end{pmatrix} = \begin{pmatrix} ab & 0 \\ bc - ac' & ab \end{pmatrix} \in G$$

Verifichiamo la commutatività.

$$AB = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix} \begin{pmatrix} b & 0 \\ c' & b \end{pmatrix} = \begin{pmatrix} ab & 0 \\ bc + ac' & ab \end{pmatrix}$$

$$BA = \begin{pmatrix} b & 0 \\ c' & b \end{pmatrix} \begin{pmatrix} a & 0 \\ c & b \end{pmatrix} = \begin{pmatrix} ab & 0 \\ bc + ac' & ab \end{pmatrix}$$

da cui G è commutativo.

(b) Siano A e $B \in G$. Verifichiamo che $\varphi(AB) = \varphi(A)\varphi(B)$.

$$\varphi(A) = a
\varphi(B) = b
\varphi(AB) = \varphi\left(\begin{pmatrix} a & 0 \\ c & a \end{pmatrix}\begin{pmatrix} b & 0 \\ c' & b \end{pmatrix}\right)
= \varphi\left(\begin{pmatrix} ab & 0 \\ bc + ac' & ab \end{pmatrix}\right)
= ab$$

Dunque

$$\varphi(AB) = ab = \varphi(A)\varphi(B)$$

(c)
$$\ker \varphi = \{A \in G : \varphi(A) = 1\} = \left\{ \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} : c \in \mathbb{Z}_8 \right\}$$

$$\operatorname{Im} \varphi = \{a \in \mathbb{Z}_8 : \exists A \in G \in \varphi(A) = a\} = \{1, 3, 5, 7\} = U(\mathbb{Z}_8)$$

Ricordiamo che $\ker \varphi$ un sottogruppo normale. Allora

$$G/\ker \varphi = \left\{ \overline{\left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right)} : a \in U\left(\mathbb{Z}_8\right) \right\}$$

Dunque l'omomorfismo canonico è definito da

$$\phi: G/\ker \varphi \longrightarrow U(\mathbb{Z}_8)$$

tale che

$$\phi\left(\overline{\left(\begin{array}{cc}a&0\\0&a\end{array}\right)}\right) = a$$

(d)
$$\varphi^{-1}(5) = \left\{ \begin{pmatrix} 5 & 0 \\ c & 5 \end{pmatrix} : c \in \mathbb{Z}_8 \right\}$$

- 2. Sia C_{12} il gruppo delle radici complesse dodicesime dell'unità.
 - (a) Determinare il gruppo $Aut(C_{12})$ degli automorfismi di C_{12} :
 - (b) Stabilire se $Aut(C_{12})$ è un gruppo ciclico.

Soluzione

(a) Osserviamo che

$$C_{12} = \left\{ z \in \mathbb{C} : z^{12} = 1 \right\}$$

= $\left\{ e^{\frac{2k\pi i}{12}} \text{ con } k = 0, \dots, 11 \right\}$

Ricordiamo che i generatori di C_{12} sono le radici primitive dell'unità, cioé $z=e^{\frac{2k\pi i}{12}}$ con k=1,5,7,11. Poniamo $z_0=e^{\frac{\pi i}{6}}$, allora

$$C_{12} = \left\{ z_0^i : i = 0 \dots 11 \right\}$$

Dunque abbiamo quattro possibili automorfismi

$$\varphi_i: C_{12} \longrightarrow C_{12}$$

definiti da

$$\varphi_i(z_0) = z_0^i$$

per i = 1, 5, 7, 11. Quindi

$$Aut(C_{12}) = \{ \varphi_1 = id, \varphi_5, \varphi_7, \varphi_{11} \}.$$

(b) Osserviamo che $\varphi_5^2 = \varphi_7^2 = \varphi_{11}^2 = \varphi_1$, quindi $Aut(C_{12}) \cong V_4$ non è ciclico.

3. Determinare le possibili strutture cicliche e gli ordini degli elementi del gruppo alterno di grado sette A_7 .

Soluzione

Ricordiamo che A_7 sono le permutazioni pari. Le possibili strutture cicliche sono

- (-)
- (- -)
- (----)
- (----)
- (--)(--)
- (--)(----)
- (---)(---)
- (- -)(- -)(- -)

Inoltre

- (-) ha ordine 1
- (- -) ha ordine 3
- $\bullet \ \mbox{(----)}$ ha ordine 5
- $\bullet \ (\mbox{----})$ ha ordine 7
- (--)(--) ha ordine 2
- (--)(---) ha ordine 4
- (---)(---) ha ordine 3
- (---)(--)(--) ha ordine 6

4. Nel prodotto cartesiano $\mathbb{Z}_2 \times \mathbb{Z}_5$ si definisca l'operazione

$$(a,b) + (c,d) = (a+c,b+d).$$

Mostrare che rispetto a questa operazione $\mathbb{Z}_2 \times \mathbb{Z}_5$ è un gruppo ciclico e determinate tutti i suoi generatori.

Soluzione

Mostriamo che $\mathbb{Z}_2\times\mathbb{Z}_5$ è un gruppo. Siano $a,\,c$ e $e\in\mathbb{Z}_2$ e $b,\,d$ e $f\in\mathbb{Z}_5$ allora

ullet Chiusura

$$(a,b) + (c,d) = (a+c,b+d) \in \mathbb{Z}_2 \times \mathbb{Z}_5$$

• Associativià

$$((a,b)+(c,d))+(e,f) = (a+c+e,b+d+f) = (a,b)+((c,d)+(e,f))$$

• Esistenza dell'elemento neutro

$$(a,b) + (0,0) = (0,0) + (a,b) = (a,b)$$

• Inverso

$$-(a,b) = (-a,-b)$$

Inoltre è facile vedere che $\mathbb{Z}_2\times\mathbb{Z}_5$ è generato da (1,b) con $b\in\mathbb{Z}_5$ non zero

5. Sia G un gruppo moltiplicativo e N un sottogruppo normale di G di indice m. Mostrare che, per ogni $g \in G, g^m \in N$.

Soluzione

Poiché [G:N]=mabbiamo #(G/N)=m. Per ogni $g\in G$ consideriamo la sua classe $gN\in G/N$ allora

$$g^m N = (gN)^m = eN$$

Quidi

$$g^m \in N$$