Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2004/2005 AL2 - Algebra 2 - Gruppi, Anelli e Campi Prova di Esame - Appello C 13 Giugno 2005

Cognome	Nome
Numero di matricola	

Avvertenza: Svolgere gli esercizi nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'uso di libri, appunti e calcolatrici.

1. Sia G il gruppo delle unità dell'anello \mathbb{Z}_{20} . Verificare che $[9]_{20} \in G$ e stabilire se il gruppo quoziente $\frac{G}{[9]_{20}G}$ è ciclico.

2. Siano Q il gruppo delle unità dei quaternioni e K il gruppo di Klein. Determinare un omomorfismo non nullo di gruppi $f:Q\longrightarrow K$.

- 3. Sia $\mathbb{Z}[i]=\{a+bi\,;\;a,b\in\mathbb{Z}\}\subseteq\mathbb{C}$ l'anello degli interi di Gauss.
 - (a) Verificare che l'applicazione

$$\phi: \mathbb{Z}[i] \to \mathbb{Z}_2$$
 definita da $\phi(a+bi) = [a+b]_2$

è un omomorfismo suriettivo di anelli.

(b) Determinare un generatore di $Ker\phi$ e definire esplicitamente un isomorfismo

$$\frac{\mathbb{Z}[i]}{Ker\phi} \to \mathbb{Z}_2.$$

- 4. Sia $\alpha = 1 + \sqrt[3]{2}$.
 - (a) Determinare il polinomio minimo di α su \mathbb{Q} ;
 - (b) Descrivere gli elementi del campo $\mathbb{Q}(\alpha)$;
 - (c) Determinare una base di $\mathbb{Q}(\alpha)$ su \mathbb{Q} ;
 - (d) Calcolare l'inverso di α in $\mathbb{Q}(\alpha)$.