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ABSTRACT: An example shows that if A = lim
←−

An is the inverse limit of an inverse
system {ϕmn : Am → An | m ≥ n} of Bézout (hence Prüfer) domains An, then A need
not be a Prüfer (or a Bézout) domain. If, however, each transition map ϕmn is surjective,
the question whether A must be a Prüfer domain is more subtle. A partial result is given
for this context. Enhancement of this result is considered by means of associated inverse
systems of CPI-extensions, with applications to Prüfer domains, Bézout domains and
locally divided domains.

1 Introduction

This note is a sequel to the work initiated on inverse limits of integral domains in [5].
Because much of [5] had to do with applications to certain infinite-dimensional integral
domains called P∞V Ds, it was natural to restrict attention in [5] to inverse limits of some
special types of inverse systems indexed by N, the set of positive integers. The contexts of
several other applications in [5] were motivated by the work in [6] on direct limits of integral
domains. As a central result in [6] stated that any direct limit (over a directed index set)
of Prüfer domains is a Prüfer domain, it was natural to ask in [5] whether the class of
Prüfer domains is stable under inverse limit. In the quasilocal case, there is a complete
answer [5, Theorem 2.1 (g)]: the inverse limit of any inverse system of valuation domains
(indexed by N) is a valuation domain. For the special type of inverse system emphasized
in [5], it was established in [5, Theorem 2.21] that the class of Prüfer domains is stable
under inverse limit for that type of inverse system. The general question of whether the
class of Prüfer domains is stable under inverse limits of arbitrary inverse systems indexed
by N was left open in [5]. In this note, we resolve that question.

Sadly, the answer is negative, as Example 2.1 presents an inverse system of Prüfer
domains whose index set is N and whose inverse limit is not a Prüfer domain. From the
point of view of category theory, this fact is somewhat palatable, since a nontrivial product
of rings is an inverse limit (granted not over a directed index set) and is never an integral
domain (Prüfer or otherwise). Nevertheless, and more to the point, we notice that the
inverse system {ϕmn : Am → An | m ≥ n} in Example 2.1 lacks one important ingredient;
namely, its transition maps ϕmn are not surjective. We thus come to a sharpening of
the question: Is the class of Prüfer domains stable under inverse limits of inverse systems
which are indexed by N and which have surjective transition maps? The bulk of this paper
studies this question.

The prime ideals P of A := lim
←−

An include those of the An (assuming surjective ϕmn)
but we do not know if that is essentially the complete story, as it was in the earlier context



[5, Theorem 2.5 (a)]. (A related problem is that if B := lim
←−

Bn is another inverse limit
such that Spec(An) ∼= Spec(Bn) as partially ordered sets for each n, then it need not be
the case that Spec(A) ∼= Spec(B) [11, page 354, lines 1–14; Propositions 2.1 and 3.1];
for a positive partial result in this regard, see [11, Theorem 5.7].) Our methods consider
only P ∈ ∪ Spec(An) as we seek to determine if AP is a valuation domain. Theorem
2.3 and Corollary 2.4 provide a positive answer if each An is a Bézout domain and each
ϕmn is surjective when restricted to unit groups. Proposition 2.6 (b) shows that two
canonical valuation domains containing AP are isomorphic and hence, in a sense, equally
approximate AP . One of these canonical extensions of AP is studied via an associated
inverse system in which each An is replaced with a suitable CPI-extension (in the sense
of [1]) so that each transition map in the new inverse system has kernel a divided prime
ideal (in the sense of [2]). The latter inverse system falls under the rubric of [5], thus
permitting use of results such as the above-mentioned [5, Theorem 2.21]. For the sake
of clarity, some of the “Prüferian” applications in Proposition 2.6 (a) are couched in the
more general context of locally divided domains (in the sense of [2], [3]). Finally, Remark
2.7 explains that if the An are merely (commutative) rings rather than integral domains,
then even in the presence of surjective transition maps, Spec(lim

←−
An) may be much larger

than ∪ Spec(An).
In addition to the notational conventions indicated above, we mention the following.

All rings considered are commutative with identity. If A is a ring, then U(A) denotes the
set of units of A, Spec(A) denotes the set of prime ideals of A and “dimension” refers to
the Krull dimension of A. If A is a domain with quotient field K, then an overring of A
is any ring B such that A ⊆ B ⊆ K. Any unexplained material is standard, as in [9], [10].

2 Results

We begin with a negative answer to the näıve question.

Example 2.1. There exists an inverse system {ϕmn : Am → An | m ≥ n} such that An

is a Bézout (hence Prüfer) domain for each n ∈ N but A := lim
←−

An is not a Prüfer domain
(and hence is not a Bézout domain).

Proof. Suppose, for the moment, that there exists an integrally closed integral domain
A such that A is not a Prüfer domain and the set of minimal valuation overrings of
A is denumerable, say {Vi | i ∈ N}. For each n ∈ N, put An := ∩n

i=1Vi. By [10,
Theorem 107], An is a Bézout (and, hence, Prüfer) domain for each n ∈ N. Moreover,
∩∞

n=1An = ∩∞

i=1Vi = A since A is integrally closed [9, page 231]. If m ≥ n in N, define
ϕmn : Am → An to be the inclusion map. Then {ϕmn | m ≥ n} evidently forms an inverse
system, but its inverse limit, lim

←−
An = ∩∞

n=1An = A, is not a Prüfer (or a Bézout) domain.
It remains to construct an integral domain A with the properties supposed above. To

this end, let k be a countable field, X an indeterminate over k, and V = k(X) + M a
valuation domain with maximal ideal M 6= 0. Then A := k+M has the desired properties.
Indeed, A is integrally closed but not a Prüfer domain, by standard facts about D + M
constructions [9, Exercise 11 (2), page 202; Exercise 13 (2), page 286]. Also, the set of
minimal valuation overrings of A is in one-to-one correspondence with the set of (minimal)
valuation domains W of k(X) contained properly between k and k(X): see [9, Exercise
13 (2), page 203]. Since k is countable, the set of monic irreducible polynomials in k[X]
(resp., k[X−1]) is denumerable (cf. [10, Exercise 8, page 8]). It is well known that such
polynomials serve to classify the valuation domains W in question (cf. [12]) and so the set
of such W is denumerable.

We next fix the riding assumptions and notation for the rest of the paper. We
assume given an N-indexed inverse system of integral domains Ak, {ϕmn : Am → An | m ≥



n}, which has the property that each of its transition maps ϕmn is surjective. Put

A := lim
←−

An, Φn : A→ An the canonical map, Qn := ker(Φn)

and
Qmn := ker(ϕmn) for m ≥ n.

The next result collects some useful facts. They may be proved as in the corresponding
parts of [5, Theorem 2.1, Lemma 2.2 and Proposition 2.4], although the ambient hypotheses
for the cited results were more stringent than our current riding assumptions.

Lemma 2.2. (a) A = {(an) ∈
Q

An | ϕn+1,n(an+1) = an for each n ∈ N}.
(b) For each n ∈ N, Φn is surjective and is the composite of the inclusion map A →֒

Q

Ak and the canonical projection
Q

Ak → An.
(c) For each n ∈ N, Qn ∈ Spec(A) and A/Qn

∼= An.
(d) For each n ∈ N, Qn = {(ak) ∈ A | ak = 0 for each k ≤ n}.
(e) Q1 ⊇ Q2 ⊇ Q3 ⊇ . . . and ∩Qn = 0.
(f) If r ≥ n ∈ N, then Qrn = Φr(Qn), Φ−1

r (Qrn) = Qn, ϕr+1,r restricts to a surjection
Qr+1,n → Qrn, and ϕ−1

r+1,r(Qrn) = Qr+1,n.
(g) If r ≥ n ∈ N, then lim

←−
{Qrn | r ≥ n} = Qn canonically.

We turn now to the main question, namely, whether An being a Prüfer domain for each
n implies that A is a Prüfer domain; i.e., that AP is a valuation domain for each (without
loss of generality) nonzero P ∈ Spec(A). Our proofs require the restriction that P contain
some Qν , a condition that was automatically satisfied by the pullbacks treated in [5]. (See
[5, Theorem 2.5 (a)]. We do not know if the riding assumptions of the present paper
ensure the P ⊇ Qν condition. See also Remark 2.7.) In view of Example 2.1, it seems
natural to focus first on the case in which each An is a Bézout domain. For this context,
Theorem 2.3 gives a positive conclusion if ϕn+1,n(U(An+1)) = U(An) for each n. (Notice
that, since ϕn+1,n is surjective for each n, the latter condition holds automatically if An+1

is quasilocal, that is a valuation domain, for each n. However, if An+1 is not quasilocal,
it need not be the case that ϕn+1,n(U(An+1)) = U(An).) Note that, in contrast with
the methods in [5], Theorem 2.3 and Corollary 2.4 avoid the assumption that Qn+1,n is a
divided prime ideal of An+1 for each n.

Theorem 2.3. For each n, suppose that An is a Bézout domain and that ϕn+1,n induces
a surjection U(An+1) → U(An). If, in addition, P ∈ Spec(A) is such that P ⊇ Qν for
some ν, then AP is a valuation domain.

Proof. It is enough to show that if α, γ ∈ AP , then either α ∈ γAP or γ ∈ αAP . Without
loss of generality, we may assume that α, γ ∈ P . Write α = (αn), γ = (γn) ∈

Q

An. By
restricting attention to the (cofinal) set {n ∈ N | n ≥ ν} and relabeling, we may assume
that P ⊇ Q1, and so αn, γn ∈ Pn := Φn(P ) for each n ≥ 1. Without loss of generality,
αn 6= 0 and γn 6= 0 for all n.

Since An is a Bézout domain, it is a GCD-domain (in the sense of [10, page 32]). Let
dn := gcd(αn, γn); in other words, dn is a greatest common divisor of αn and γn in An.
Then αn = dnα

′
n and γn = dnγ

′
n, where α′

n, γ
′
n ∈ An and gcd(α′

n, γ
′
n) = 1. Fix n for the

moment. Then, with ϕ := ϕn+1,n, we have the equations

αn = ϕ(αn+1) = ϕ(dn+1)ϕ(α′

n+1) = dnα
′

n,

γn = ϕ(γn+1) = ϕ(dn+1)ϕ(γ′

n+1) = dnγ
′

n.

Since An+1 is a Bézout domain, 1 = gcd(α′
n+1, γ

′
n+1) is an An+1-linear combination of

α′
n+1 and γ′

n+1. Applying ϕ, we see that 1 is an An-linear combination of ϕ(α′
n+1) and



ϕ(γ′
n+1). Thus, gcd(ϕ(α′

n+1), ϕ(γ′
n+1)) = 1. It now follows via [10, Theorem 49 (a)] from

the above displayed equations that

gcd(αn, γn) = ϕ(dn+1) gcd(ϕ(α′

n+1), ϕ(γ′

n+1)) = ϕ(dn+1).

As any two gcds of αn and γn are associates, there exists un ∈ U(An) such that ϕn+1,n(dn+1)
= undn.

Since U(A1) = ϕ21(U(A2)), we may redefine d2 (to be an associate of the former d2)
so as to ensure that ϕ21(d2) = d1. (Specifically, replace d2 with v2d2, where v2 ∈ U(A2)
satisfies ϕ21(v2) = u−1

1 .) Similarly, we may use the hypotheses to redefine d3, d4, . . . so
that ϕn+1,n(dn+1) = dn for all n ≥ 1. By abus de langage, we keep the above α′

n, γ
′
n

notation. Then (α′
n) ∈ A, since ϕ := ϕn+1,n satisfies

dnϕ(α′

n+1) = ϕ(dn+1)ϕ(α′

n+1) = ϕ(αn+1) = αn = dnα
′

n

and dn 6= 0. Similarly, (γ′
n) ∈ A. Observe that it suffices to show that (α′

n)AP and (γ′
n)AP

are comparable under inclusion, for δ := (dn) ∈ A satisfies α = δ(α′
n) and γ = δ(γ′

n). Thus,
we may replace α and γ with (α′

n) and (γ′
n), respectively. In other words, we may assume

that gcd(αn, γn) = 1 for each n.
We next give two ways to complete the proof. First, recall that gcd(αn, γn) = 1 for

each n. Hence, αnAn + γnAn = An for each n. Then localizing at Pn yields that

(An)Pn = αn(An)Pn + γn(An)Pn ⊆ Pn(An)Pn ⊂ (An)Pn ,

the desired contradiction.
The following is an alternate way to finish the proof. Since inverse limit preserves

monomorphisms, we can view A ⊆ D := lim
←−

(An)Pn . As An is a Prüfer domain, (An)Pn is
a valuation domain for each n, and so by [5, Theorem 2.1 (g)], D is a valuation domain.
Thus, without loss of generality, αγ−1 ∈ D. In particular, ξn := αnγ

−1
n ∈ (An)Pn for all n.

Hence, ξn = bnz
−1
n for some bn ∈ An and zn ∈ An \Pn. As αnγ

−1
n is in “lowest terms” and

An is a GCD-domain, it follows that γn|zn in An, whence zn ∈ Anγn ⊆ Pn, the desired
contradiction, thus completing the alternate proof.

For an example illustrating Theorem 2.3, begin with a valuation domain (V,M) having
prime spectrum

M = P1 ⊃ P2 ⊃ · · · ⊃ Pn ⊃ Pn+1 ⊃ · · · ⊃ 0

and consider the inverse system defined by An := V/Pn, with the transition maps ϕmn :
V/Pm → V/Pn the canonical surjections if m ≥ n.

Corollary 2.4. For each n, suppose that An is a Bézout domain and that ϕn+1,n induces
a surjection U(An+1)→ U(An). If, in addition, Spec(A) = ∪{im(Spec(An)→ Spec(A)) |
n ∈ N}, then A is a Prüfer domain.

Proposition 2.6 studies further the condition that AP is a valuation domain. First,
recall from [1], [7] that if P is a prime ideal of an integral domain R, the CPI- extension
of R with respect to P is the integral domain given by the following pullback:

R(P ) := RP ×RP /PRP
R/P = R+ PRP .

We assume familiarity with the material on Spec(R(P )) in [1], [7]. Note also that PRP is
a divided prime ideal of R(P ): cf. [1, Proposition 2.5, Theorem 2.4], [2, Lemma 2.4 (b),
(c)].

Suppose that {ϕmn : Am → An | m ≥ n} satisfies our riding hypotheses. We proceed
to define an inverse system {ϕ∗

mn : A∗
m → A∗

n | m ≥ n ≥ 2}, called the associated inverse
system of {ϕmn}, which is more tractable. For each n ≥ 2 in N, let

A∗

n := An(Qn1) = An +Qn1(An)Qn1
.



Define ϕ∗
n+1,n : A∗

n+1 → A∗
n by

ϕ∗

n+1,n(a+ qz−1) = ϕn+1,n(a) + ϕn+1,n(q)ϕn+1,n(z)−1

for all a ∈ An+1, q ∈ Qn+1,1 and z ∈ An+1 \ Qn+1,1. Since Lemma 2.2 (f) ensures that
Qn+1,1 = ϕ−1

n+1,n(Qn1), an easy calculation verifies that ϕ∗
n+1,n is well defined. Then the

inverse system {ϕ∗
mn} is obtained by defining

ϕ∗

mn := ϕ∗

n+1,n ◦ ϕ
∗

n+2,n+1 ◦ · · · ◦ ϕ
∗

m,m−1 if m > n+ 1 ≥ 3.

By analogy with the riding notation, we put A∗ := lim
←−

A∗
n, Q

∗
n := ker(A∗ → A∗

n) and
Q∗

mn := ker(ϕ∗
mn) if m ≥ n ≥ 2.

Lemma 2.5 (a) establishes that, apart from rescaling by using all n ≥ 2, {ϕ∗
mn} satisfies

our riding hypotheses, and Lemma 2.5 (b) shows that {ϕ∗
mn} has a desirable property which

was assumed for the inverse systems treated in [5].

Lemma 2.5. Let {ϕmn : Am → An | m ≥ n} be an N-indexed inverse system of locally
divided integral domains for which ϕmn is surjective for each m ≥ n in N. Let {ϕ∗

mn :
A∗

m → A∗
n | m ≥ n} be the associated inverse system (using the notation introduced above).

Then:
(a) ϕ∗

mn is surjective for each m ≥ n ≥ 2 in N.
(b) Q∗

n+1,n is a divided prime ideal of A∗
n+1 for each n ≥ 2.

Proof. (a) Without loss of generality, m = n + 1. Then it is easy to verify the assertion
by using the explicit construction of ϕ∗

n+1,n given above, since Lemma 2.2 (f) ensures that
ϕn+1,n sends Qn+1,1 onto Qn1 and An+1 \Qn+1,1 onto An \Qn1.

(b) Since Qn+1,n ⊆ Qn+1,1, a direct calculation using the above explicit construction
of ϕ∗

n+1,n shows that

Q∗

n+1,n := ker(ϕ∗

n+1,n) = Qn+1,n(An+1)Qn+1,1
.

The assertion is a consequence of the following useful fact: if P ⊆ Q are prime ideals of an
integral domain R such that RQ is a divided domain, then PRQ is a divided prime ideal
of R(Q) := R + QRQ. (Apply this fact to R = An+1, P = Qn+1,n, and Q = Qn+1,1.)
To prove the above “useful fact”, note by an easy calculation that one has to show that
PRP = PRQ, and so an appeal to the proof of a characterization of locally divided domains
[3, Theorem 2.4] completes the argument.

Proposition 2.6. Let {ϕmn : Am → An | m ≥ n} satisfy the riding hypotheses, with
A := lim

←−
An. Let {ϕ∗

mn : A∗
m → A∗

n | m ≥ n} be the associated inverse system, with
A∗ := lim

←−
A∗

n. Then:
(a) Let C be a class of integral domains. If An ∈ C for each n ∈ N, then A∗ ∈ C in

each of the following cases: C is the class of all (i) Prüfer domains, (ii) Bézout domains,
(iii) divided domains, (iv) locally divided domains.

(b) Suppose that An is a locally divided domain for each n (for instance, repeat the
hypotheses in (a).) Let P ∈ Spec(A) with P ⊇ Q1; take Pn := Φn(P ). Put B :=
lim
←−

An(Pn). Then P := lim
←−

Pn(An)Pn ∈ Spec(B). Moreover, the canonical injection
AP → BP is an isomorphism if and only if the canonical injection AP → lim

←−
(An)Pn is an

isomorphism. Indeed, BP and lim
←−

(An)Pn are isomorphic as AP -algebras.

Proof. (a) Note that A∗
n ∈ C for each n ≥ 2. Indeed, for (i) and (ii), this holds since

each overring of a Prüfer (resp., Bézout) domain is a Prüfer (resp., Bézout) domain [9],
while for (iii) and (iv), the proof of [4, Proposition 2.12] combines with [2, Lemma 2.2 (a),
(c)] to ensure that the class of divided (resp., locally divided) domains is stable for CPI-
extensions. Let {ϕ∗

mn : A∗
m → A∗

n} be the associated inverse system, with A∗ := lim
←−

A∗
n.



The strategy is now to apply appropriate results of [5] to {ϕ∗
mn}. To be able to do

so, we must verify that {ϕ∗
mn} satisfies the riding assumptions of [5]. In view of Lemma

2.5, it follows from [5, Remark 2.24] that we need only verify that A∗
2 is not a field and

Q∗
n+1,n 6= 0 for all n ≥ 2.

If A∗
2 is a field, then by cofinality, we can delete the index 2 ∈ N. If the concern

persists, then by cofinality, we may assume that A∗
n+1 = An+1(Qn+1,1) is a field for each

n ∈ N, whence Qn+1,1 = 0 and ϕn+1,1 is an isomorphism for each n ∈ N. In that case,
A ∼= A1 ∈ C and so, since A∗

n
∼= An for each n, A∗ ∼= lim

←−
An = A ∈ C.

Similarly, if passing to cofinal index sets does not remove concerns about Q∗
n+1,n,

then we may assume that Q∗
n+1,n = 0 for each n ∈ N. By Lemma 2.5, it follows that

A∗ ∼= A∗
2 ∈ C.

We may now apply the results of [5] to {ϕ∗
mn} as follows: for (i), use [5, Theorem 2.21];

for (ii), use [5, Corollary 2.23]; for (iii), use [5, Corollary 2.17 (a)]; and for (iv), use [5,
Corollary 2.17 (b)].

(b) As P ⊇ Q1 ⊇ Qn = ker(Φn), we have Pn ∈ Spec(An) for each n. As P = Φ−1
n (Pn),

we infer a canonical ring homomorphism α : AP → D := lim
←−

(An)Pn . It is straightforward
to use the construction of α to verify that α is an injection. We next sketch how to rework
the construction of the “associated inverse system” to produce B.

We produce an inverse system {ψmn : Bm → Bn | m ≥ n ≥ 2} as follows. For each
n ∈ N, consider the CPI-extension Bn := An(Pn) = An + Pn(An)Pn . As ϕ−1

n+1,n(Pn) =
Pn+1 (as a consequence of Lemma 2.2 (f), (g)), we can mimic the construction of ϕ∗

n+1,n

to produce a surjective ring homomorphism ψn+1,n : Bn+1 → Bn and, hence, the required
surjection ψmn : Bm → Bn by composition if m > n+ 1 ≥ 3. We show that the methods
of [5] apply, more or less, in studying B := lim

←−
Bn.

Observe that the kernel of ψn+1,n is Qn+1,n(An+1)Pn+1
. Since the hypothesis in (b)

ensures that (An+1)Pn+1
is a divided domain, reasoning as in the proof of Lemma 2.5 (b)

shows that ker(ψn+1,n) is a divided prime ideal of Bn+1. There are two ways that the
methods of [5] might not apply: either each such ψn+1,n is an isomorphism or each Bn is a
field. In the first case, all the canonical maps in question are isomorphisms, since AP , BP

and lim
←−

(An)Pn all canonically identify with (A1)P1
in this case. In the second case, each

Pn = 0 by the standard theory of CPI-extensions, whence the inverse systems defining
A and B are essentially the same, with AP , BP and lim

←−
(An)Pn all canonically identified

with the quotient field of A1 in this case. Thus, we can assume henceforth that the inverse
system {ψmn} satisfies the riding assumptions in [5].

View P := lim
←−

Pn(An)Pn canonically inside lim
←−

Bn = B. It is straightforward to use

the condition ϕ−1
n+1,n(Pn) = Pn+1 to verify that P ∈ Spec(B). (The same conclusion holds

in the two cases noted above, for then P ∼= P1(A1)P1
and B ∼= B1.) Therefore, by [5,

Proposition 2.15 (d)], the canonical ring homomorphism β : BP → E := lim
←−

(Bn)Pn(An)Pn

is an isomorphism. Moreover, there is an isomorphism γ : D → E because one has
compatible isomorphisms (An)Pn → (Bn)Pn(An)Pn

at every level. To finish the proof of
(b), it suffices to find a ring homomorphism δ : AP → BP such that β◦δ = γ◦α : AP → E.

By composing the inclusions A → B and B → BP , one obtains an injection f : A →
BP . We claim that f(A \P ) ⊆ B \P . Indeed, if a = (an) ∈ A∩P , then an ∈ Pn(An)Pn ∩
An = Pn for each n, whence a ∈ lim

←−
Pn = P , thus proving the claim. The universal

mapping property of localization produces a unique ring homomorphism δ : AP → BP

that extends f , and a routine calculation verifies that β ◦ δ = γ ◦ α, to complete the
proof.

In the context of Proposition 2.6 (b), suppose that An is a Prüfer (hence, locally
divided) domain for each n. Then both BP and lim

←−
(An)Pn are valuation domains, by

[5, Theorem 2.21 and Theorem 2.1 (g)]. (In the two degenerate cases noted above, the
assertion about BP follows since B ∼= B1 is Prüfer in these cases.) Thus, we come to the



main point of Proposition 2.6 (b): these two standard ways to produce a valuation domain
containing AP are isomorphic, and AP coincides with the first of these valuation domains
if and only if AP coincides with the second.

Remark 2.7. It is well known (cf. [6]) that if {Bi} is a directed system of (commutative)
rings indexed by a directed index set, then Spec(lim

−→
Bi) ∼= lim

←−
Spec(Bi). Accordingly,

it may seem reasonable to speculate that if {Dn} is an inverse system of rings which is
indexed by N and has surjective transition maps, then there should be a close connection
between Spec(lim

←−
Dn) and lim

−→
Spec(Dn). If each Dn is an integral domain, this is indeed

so for certain natural inverse systems: see [5, Theorem 2.5 (a)]. However, the following
example shows that the situation can be more complicated if the Dn are not integral
domains. In this example, each Dn is a principal ideal ring.

Let {ki | i ∈ N} be any sequence of fields. For each n ∈ N, put Dn :=
Qn

i=1 ki. If
r ≥ n in N, let ϕrn : Dr → Dn denote the canonical projection map; of course, each ϕrn

is surjective. Moreover, lim
−→

Spec(Dn) is countable, since it can be viewed as a union of
a countable chain of finite sets. However, {ϕrn | r ≥ n} leads to D := lim

←−
Dn which is

such that Spec(D) is not countable. Indeed, D ∼=
Q

∞

i=1 ki canonically, and so Spec(D) is
the Stone-Čech compactification of N when N is endowed with the discrete topology. (The
“Stone-Čech” part of the preceding assertion seems to be folklore. In case ki = R for all i,
this piece of folklore follows from [8, items 7.10 and 7.11, page 105].) We conclude from this
example that care must be taken if one attempts to extend the work in [5] and this note to
N-indexed inverse systems having surjective transition maps for arbitrary (commutative)
rings.
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