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1. INTRODUCTION 

Let R be a commutative integral domain with identity and M a unital 
R-module. Recall that the trace of M, denoted y,(M), is the ideal of R 
generated by the set {f(m): f E om,(M, R)}. When no confusion will H 
result, we will suppress the R and write y(M). 

In Section 2, we prove that if R is a valuation domain and M a unital 
R-module, then y(M) either equals R or a prime ideal of R. It is this result 
that motivates our work and gives rise to the following definition: A 
domain R is said to satisfy the truce property (for brevity, we will say R 
satisfies TP) provided that y(M) either equals R or a prime ideal of R for 
each R-module M. The goal of this paper is to characterize certain classes 
of domains satisfying TP. 

Besides the result mentioned above (Proposition 2.1) Section 2 consists 
mainly of fundamental observations and examples which are very useful in 
Sections 3 and 4. In particular, we prove that R satisfies TP if and only if 
y(Z) equals R or a prime ideal of R for each ideal I of R (Proposition 2.4). 
In connection with this result, we establish that y(Z) = II-i for any nonzero 
fractional ideal I of R (Lemma 2.2). 

Section 3 is devoted to the study of Noetherian domains satisfying TP. 
We prove that a Noetherian domain R satisfies TP if and only if R is a 
Dedekind domain, or dim(R) = 1 and R has a unique noninvertible 
maximal ideal M with IV-~ ’ = R (i.e., all other maximal ideals of R are 
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invertible) (Theorem 3.5). We use this characterization to explicitly 
describe how Noetherian TP domains are constructed via a very specific 
pullback diagram (Theorem 3.6). Finally we use Theorems 3.5 and 3.6 to 
construct Noetherian TP domains with various properties (Examples 3.7). 

Section 4 consists of an analysis of Priifer domains satisfying TP. Recall 
that a domain R is said to be a (# )-domain provided nMEd, R, # 
n Mt dz R,,,,, where d I and A, are distinct subsets of Max(R). R is called a 
(# # )-domain in case each overring of R is a ( # )-domain. We prove 
under the assumption of R being a Priifer (# # )-domain, that R is a TP 
domain if and only if the noninvertible prime ideals of R are linearly 
ordered (Theorem 4.2). An example is provided (Example 4.3) to illustrate 
the invalidity of the Theorem, if the (# #) condition is not included. 
Finally, we prove for a finite dimensional Pri.ifer domain R that R satisfies 
TP if and only if R is a (# # )-domain with its noninvertible prime ideals 
linearly ordered (Theorem 4.4). 

2. MOTIVATION AND GENERAL RESULTS 

The origin of this paper arises from the following result which generalizes 
[ 1, Theorem 2.83. 

PROPOSITION 2.1. If R is a valuation domain and M an R-module, then R 
satisfies TP. 

Proof: Assume y(M) # R, y(M)# (0) and choose PeSpec(R) with P 
minimal over y(M). We claim that P = y(M). Suppose not and let 
a E P\Y(W Note that y(M)caRc R, and so Hom,(M, R)c 
a[Hom,(M, R)]. Thus y(M) c (a) y(M), and hence y(M) = (a”) y(M) for 
each positive integer n. Therefore, y(M) c 0;’ l(a”) = P,. However, P, is a 
prime ideal of R properly contained in P, which is a contradiction [7, 
Theorem 17.11. 

We will show momentarily that the definition of the trace property can 
be restricted to integral ideals, but first we need a definition and an elemen- 
tary lemma. Recall that an R-submodule Z of K = qf(R) is called a frac- 
tional ideal of R provided there exists 0 #r E R such that rZc R. 

LEMMA 2.2. Zf Z is a fractional ideal of R, then y(Z) = ZZ- ‘. 

ProoJ: We may assume I# (0). Let f~ Hom(Z, R) and 0 #a E I. To 
show that y(Z)cZZZ’, it suffices to prove that f(a)EZZ-‘. We claim that 
f(a)/a E I-‘. Let b E Z and d a nonzero element of R with dZc R. Consider, 

(f(a)/a)b=f(abd)/ad=(f(b)ad)/ad=f(b)ER. 
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Thus f(a) = a(f(a)/a) E II ‘. For the other inclusion let 0 #UEZ and 
uez-‘. It is enough to show that au E y(Z). Define f: I + R by f(t) = tu. 
Clearly f~ Horn ,J Z, R), and so au = f(u) E y(Z). 

The following elementary remark, due to Bass [3, Proposition 7.21, will 
be very useful in the remainder of the paper. 

Remark 2.3. If M is an R-module, then y(M))’ = (y(M): y(M)). 

PROPOSITION 2.4. Let R be a domain. [f y(Z) either equals R or a prime 
ideal of R for each integral ideal Z of R, then R has TP. 

Proof Let M be an R-module and set I= y(M). We may assume 
I# (0). Notice that y(Z) = ZZ ’ = Z by Lemma 2.2 and Remark 2.3. 
Therefore y(M) either equals R or a prime ideal of R. 

COROLLARY 2.5. !f R is a Dedekind domain, then R has TP. 

It is appropriate at this time to present an example of a local domain 
satisfying TP that is not integrally closed, and hence not a valuation 
domain. We will generalize this example in Section 3. 

EXAMPLE 2.6. Let Q denote the rational numbers and let V= Q(3) 
[[x]] = Q($) + M, where M is the unique maximal ideal of the discrete 
valuation domain V. Set R = Q + M. It follows that R is Noetherian, 
l-dimensional, local with integral closure V= M ‘. Since V can be 
generated as an R-module by two elements, we have that each ideal of R is 
divisorial [ 13, Theorem 3.8). Let Z be a nonzero ideal of R such that 
ZZ ’ #R. We claim that M ’ = (II ‘))I. Clearly M ‘c (ZZZ’))‘, and 
since (II- ‘)-’ = (II ’ : ZZ ‘) (Remark 2.3) we have by integrality that 
Rc(ZZ ‘)-‘CM-‘= I’. However, since each ideal of R is divisorial, we 
deduce that M = ZZ ‘, the desired conclusion. 

It is interesting to point out that even though domains satisfying TP 
need not be integrally closed, they do exhibit a property that is somewhat 
related to integral closure. Namely, if R is a domain satisfying TP and 
u/h E R ( =integral closure of R), then u2/h E R. To see this, let T= 
R[u/b]=R+R(u/b)+ ... +R(u”~‘/h”~‘). Since (R: T)#(O), we may 
apply Lemma 2.2 to obtain yR( T) = (R : T). If (R : T) = R we are done, so 
we may assume (R : T) is a prime ideal of R. As h”- ’ E (R : T), we get 
h E (R : T), and so h(u2/h2) = u’/h E R. 

Our next sequence of results are pertinent to the general question of 
characterizing TP domains, and will be of some use in Sections 3 and 4. 

PROPOSITION 2.7. [f R has TP, then grade(R) < 1; i.e., R has no 
R-sequence qf length greuter than 1. 
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Proof: Suppose grade(R) > 1 and let a, h be an R-sequence of length 
two. Set Z= (a, h). Since ZZ’ = R [12, Exercise 1, p. 1021, y(Z2)=Z2ZZ2=Z2 
is a prime ideal of R, and thus I= Z2. However, I# I* [ 12, Theorem 761 
and this contradiction completes the proof. 

In Section 3 we will give a complete characterization for Noetherian TP 
domains, and in Section 4 we handle the Priifer TP case. However, at this 
moment we present two propositions which individually imply that an 
integrally closed Noetherian TP domain is Dedekind. 

PROPOSITION 2.8. !f R is coherent, integrally closed and satkfies TP, 
then R is a Priifer domain. 

Prooj: Let I= (a, h) where a # 0, h #O. It suffices to show that Z is 
invertible. Assume II ’ # R, and thus II-’ = P, a prime ideal of R. The 
coherence condition implies that Z ’ is module-finite over R, and so P is a 
finitely generated ideal of R. Remark 2.3 gives us Pm ’ = (P : P), and 
integrality forces P ’ = R. Hence, v( P’) = P*P-’ = P* is a prime ideal. This 
is a contradiction in exactly the same way as in the proof of 
Proposition 2.7. 

It is worthwhile to mention that the full power of coherence was not 
employed in the above proof, but merely the notion of 2-coherence, i.e., 
each 2-generated ideal of R is finitely presented. (This has been referred to 
as the finite conductor property in some of the literature.) 

PROPOSITION 2.9. Zf R is a Krull domain with TP, then R is a Dedekind 
domain. 

Proof: It is enough to show that dim(R) < 1. Suppose dim(R) > 1 and 
let PE Spec(R) such that ht(P) > 1. It follows that PP-’ = P, otherwise P 
is minimal over a principal ideal [ 12, Exercise 26, p. 431, and this cannot 
happen in a Krull domain. By integrality we have Pp ’ = (P : P) = R, and 
hence there exists a finitely generated ideal Jc P such that J-’ = R. As in 
the last two arguments this leads to a contradiction. 

For an alternate proof of Proposition 2.9, use Proposition 2.7 in com- 
bination with [12, Exercises 2 and 41. 

We will need another component for our characterization of Priifer TP 
domains in Section 4, and our next proposition serves this purpose. 

PROPOSITION 2.10. Zf R is a TP domain and M a noninvertible maximal 
ideal of R, then each noninvertible ideal of R is contained in M. 

Proof: Let Z be a noninvertible ideal of R and assume Z q.? M. 
Consider, y(ZM) = (ZM)(ZM) ’ = (ZM)(Zn M) ’ = (ZM)(Z-’ + M ‘) [ 11, 
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Lemma 3.71 = II- ‘M + ZM = ZZ~ ‘M # R. Therefore II- ‘M is a prime 
ideal of R, which is clearly a contradiction, since II- ’ d M. 

COROLLARY 2.11. If R is a domain satisfying TP and R has a noninver- 
tible maximal ideal, then all other maximal ideals qf R are invertible. 

We will end this section with a proposition which uncovers another 
interesting necessary condition for domains satisfying TP. In [ 11, we 
defined an ideal I of R to be L-stable provided R’ = (I : I), where R’ = 
lJ,F= ,(r’ : Z”). It is worthwhile to mention that in a Priifer domain each ideal 
is Z-stable [ 1, Proposition 2.71. 

PROPOSITION 2.12. Jf R satisfies TP, then each prime ideal of R is 
L-stable. 

Proqf: Let (0) # Q E Spec( R). We may assume Q is not invertible, as 
invertible ideals are always L-stable [ 1, Lemma 2.11. Thus for each n, 
Q”Q n is a nonzero prime ideal of R. To complete the proof we will show 
that (Q : Q) = (Q’ : Q”) for each n. Clearly (Q : Q) c (Qn : Qn), so let us 
concentrate on the other inclusion. Let u E (Q” : Qn) and set P = QnQ -‘I. 
Since P is a prime ideal and Qn c Q”Q pn = P, then Q c P. If Q = P we are 
finished, as UPC P. If Q 5 P, then Pm’ c (Q : Q) [6, Lemma 3.71 and our 
goal is accomplished. 

3. NOETHERIAN TP DOMAINS 

In this section we will give a complete characterization for Noetherian 
domains satisfying TP. We will need a bit of terminology before proceeding 
further. A nonzero ideal Z of a domain R is called a strong ideal if II-’ = Z, 
and Z is called strongly divisorial if Z is strong and divisorial. Let S denote 
the set of strongly divisorial ideals of R. Note that R E S. We will now use 
this concept to describe R, the integral closure of R. 

LEMMA 3.1. If R is a Noetherian domain satisfying TP, then R= 
U{P--‘: PESnSpec(R) or P= R}. 

Proof: If we let R* denote the complete integral closure of R, then we 
have R* = U {I- ‘: ZE S} [2, Proposition 121. However, the TP property 
implies that R* = u { P- ‘: PE Sn Spec(R) or P = R), and R* = R since R 
is Noetherian. 

LEMMA 3.2. Let R be a Noetherian TP domain. Then, R is integrally 
closed if and only if R is the only strongly divisorial ideal of R. 
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Proof. (e) This direction is immediate from Lemma 3.1. 
(a) Assume R = i?. By Proposition 2.8 or 2.9, we deduce that R is a 

Dedekind domain. Hence each nonzero proper ideal of R is invertible, so R 
is the only strongly divisorial ideal of R. 

Before attaining the promised characterization, we need some more 
structural information. 

LEMMA 3.3. If R is a Noetherian TP domain, then R, is a Noetherian 
TP domain ,for each P E Spec( R). 

Proof: Let J be an ideal of R,. Write J= IR,, where I is an ideal of R 
with ZC P. If II-’ = R, then clearly J(Rp: J)= R,. If ZIPi=Q, 
Q E Spec(R), then J(R, : J) = QRp. Hence, J(Rp : J) either equals a prime 
ideal of R, or R, (depending on whether Q c P or Q ti P). 

LEMMA 3.4. If R is a Noetherian TP domain, then dim(R) d 1. 

Proof Suppose dim(R) > 1 and let M be a height two prime ideal of R. 
Since R,,, is a Noetherian TP domain (Lemma 3.3), we may assume by 
changing notation that R is a local 2-dimensional TP domain with 
maximal ideal M, and that R #R (Proposition 2.9). Hence, there exists a 
strongly divisorial proper ideal P of R (Lemma 3.2) and it is prime by the 
TP property. 

We shall consider three cases: (Throughout this proof we use the follow- 
ing convention: if I is a fractional ideal of R, then denote (R : I) by I- ‘.) 

Case 1. There exists only one strongly divisorial prime ideal of R, 
namely P. 

By applying Lemma 3.1, we see that R 5 R = P- ’ = (P : P), and so 
(R : R) # (0). Let N be a height two maximal ideal of R. Since R is 
Macaulay [ 12, Exercise 25, p. 1041, we know grade(N) = 2 and hence 
(R : N’) = R for each positive integer t [ 12, Exercise 1, p. 1021. Thus, (*) 
N’N-’ = N’( R : N’) c N’(R : N’) = N’ for each t. Note that N’ is a fractional 
ideal of R, as (R : R) # (0), and so y(N’) = N’N-’ (Lemma 2.2) is either a 
nonzero prime ideal of R or equal to R. If N’N- ’ = R for some t, then by 
(*), 1 E N’, a contradiction. Therefore we shall assume N’N-’ E Spec( R) for 
each t, and consider two subcases: 

(i) N’N-‘= M for each t. 
By (*) we see that M c fi,“= 1 N’, and this is a contradiction, since the 

Krull Intersection Theorem [ 12, Theorem 771 implies that fly=, N’ = (0). 
(ii) N”N-” = Q, where s is a positive integer and Q is a height one 

prime ideal of R. 
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First, note the following inclusions: 

. . . cN’N-‘c . . . cN2N-2CNN- 1. 

Let s,, be the least positive integer such that N”ON -‘O = Q. Then N’N~-’ = Q 
for t 3 s0 and N’N- ’ = M for t < s,,. Therefore, Q c n,“= , N’ = (0), a con- 
tradiction. 

Case 2. There exists more than one height one strongly divisorial 
prime ideal of R. 

We will show that this case cannot happen. Suppose P, #P, are height 
one strongly divisorial prime ideals of R. Then, 

Note that Q is a strongly divisorial ideal of R and Q c P, n P, [2, 
Lemma 151. By the TP property, Q is a prime ideal of R and this con- 
tradicts the fact that ht(P,) = ht(P,) = 1. 

Case 3. M is strongly divisorial and Q, a height one prime ideal of R, 
is strongly divisorial. 

By Lemma3.1, R=Q-‘uM ‘=Q~~‘=(Q:Q), and the desired con- 
tradiction follows as in Case 1. 

We are now ready for the main theorem of this section. 

THEOREM 3.5. Let R be a Noetherian domain. Then R satisfies TP if and 
only if 

(a) R is a Dedekind domain, or 

(b) (i) dim(R)= 1 

(ii) R has a unique noninvertible maximal ideal M with M -’ = R 
(i.e., all other maximal ideals of R are invertible.) 

Proof. (a) If R = i?, then Proposition 2.8 or 2.9 implies that R is a 
Dedekind domain. Hence we may assume R # i? and dim(R) = 1 
(Lemma 3.4). By combining Lemma 3.2 with the proof of Case 2, 
Lemma 3.4, we see that there exists a unique strongly divisorial maximal 
ideal M of R. Clearly M is noninvertible and R = M- ’ (Lemma 3.1). 
Finally, if N is any other maximal ideal of R, then Corollary 2.11 gives us 
that N is invertible. 

(-+) Let I be a nonzero ideal of R. If R is a Dedekind domain, then 
II- ’ = R and we are done. Hence we may assume (b) and that II- ’ # R. 
We claim that II-’ c M. Suppose not and assume II-’ c N, where N is a 
maximal ideal of R different from M, and hence invertible. Thus, N ~’ c 
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(II ‘) ’ = (II ’ :ZZ- ‘)cR=M ‘, and so McM,cN,=N [12, 
Theorem 941, which is a contradiction. Therefore ZZZ’ c M, and moreover, 
M ‘c(ZZ-‘)-‘=(ZZ-‘:I1 ‘)cR=M-‘. Hence M-1 = (II-‘)-’ = 

(11 ’ : II ’ ) = i?. Thus ZZ ’ is an invertible ideal of R (R is Dedekind), and 
so II ’ n R = II-’ is a divisorial ideal of R [6, Proposition 4.61. Likewise, 
M is a divisorial ideal of R, and therefore M= M, = (II-‘),, = II- ‘. 

The reader should note that with the aid of Theorem 3.5, it is trivial to 
see that Example 2.6 is a Noetherian TP domain. In fact, Example 2.6 is 
actually a Gorenstein TP domain [ 13, Theorem 3.81. We will show 
momentarily that not all Noetherian TP domains are Gorenstein. 
Moreover, we will demonstrate how arbitrary Noetherian TP domains are 
constructed. 

THEOREM 3.6. R is a Noetherian TP domain if and only if‘ there exists a 
Dedekind domain T containing R and an ideal I of T such that: 

(a) T/Z is a ,finitely generated k-module, where k is a subfield of the 
ring T/I: 

(b) 

R-k 

I I” 
T’ T/Z 

is a pullback diagram, where u is the inclusion map and II is the canonical sur- 
jection. 

Pro96 (+) Let R be a Noetherian TP domain. If R is integrally 
closed, then (a) and (b) hold trivially for every maximal ideal I= M of R 
with k = R/M. If R is not integrally closed, then take T= 8, the integral 
closure of R, and set I= M, the unique noninvertible maximal ideal of R. 
With the aid of Theorem 3.5, it is routine to verify that (a) and (b) hold. 

(+) Assume conditions (a) and (b), and without loss of generality we 
may assume R # T. Since R satisfies the pullback diagram in (b), we know 
that R is a l-dimensional, Noetherian domain with integral closure R= T 
[4, Corollary 1.51. Thus, by Theorem 3.5, it suffices to show that there 
exists a unique maximal ideal M of R such that T = R = M ~ ‘, and that all 
other maximal ideals of R are invertible. 

Identify R with its canonical image inside T= R, and observe that 
ker(R ++ k) = Z is a maximal ideal of R. If we take I= M, then we have 
(R : R) = M [4, Theorem 1.41, and so i? = (M : M). Since R # R, then M is 
not invertible in R (otherwise (A4 : M) = R), and so M ’ = (M : M) = i?. If 
N is a maximal ideal of R and N # M we will now show that N is inver- 
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tible. Suppose that this is not the case and thus N = NN- ‘. By integrality 
we have (N : N) c R, which in turn gives us N-l c M- ‘. Moreover, as R is 
a l-dimensional Noetherian domain, it follows that M = M, c N,, = N, [ 12, 
Theorem 941 which is a contradiction. The proof is now complete. 

EXAMPLES 3.7. (a) Our first example will be a Noetherian TP domain 
that is not Gorenstein. This is in contrast to Example 2.6. Let K be a field 
with subfield k such that [K : k] > 2. Let V= K[ [xl] = K + M, where A4 is 
the unique maximal ideal of the discrete valuation domain V, and set R = 
k + M. As in Example 2.6, R is a l-dimensional local Noetherian domain 
with integral closure V= M ‘. By Theorem 3.5 or 3.6 we see that R 
satisfies TP, yet R is not Gorenstein, since M ’ cannot be generated by 
two elements [ 13, Theorem 3.81. 

(b) For our next example, we use Theorem 3.6 to construct a non- 
integrally closed Noetherian TP domain with infinitely many maximal 
ideals. In the notation of Theorem 3.6, let T= k[x], k an algebraically 
closed field, and I= fly= ‘(.x - a,), where each a,~ k. Let u: k -+ T/Z= 
ny= I k, be the diagonal map, and let R be the pullback of the diagram in 
Theorem 3.6. Then R is the desired example. 

4. PR~IFER TP DOMAINS 

In this final section we study the structure of Priifer domains satisfying 
TP. A crucial component of our work is the notion of a domain satisfying 
(# # ). Recall that R is said to be a (# )-domain if d I and A, are distinct 
subsets of Max(R), then nMtd, R,#n,,,, R,, and R iscalled a (##)- 
domain in case each overring of R is a (# )-domain. In [9], Gilmer and 
Heinzer studied these domains and proved that R is a Priifer (# # )- 
domain if and only if for each prime ideal P of R, there exists a finitely 
generated ideal 1~ P such that each maximal ideal of R containing I con- 
tains P. We shall employ this result in our study of Priifer TP domains. 

Before stating our first characterization we need 

LEMMA 4.1. Let R be a Priifer domain, P E Spec(R) and Q a proper 
P-primary ideal of R. rf Q ’ = P-‘, then Q-“= P-‘for each n> 1. 

Proof First, assume that Pf P2. In this case {P”},“= I is the set of 
P-primary ideals of R [7, Theorem 23.31. It suffices to show that if 
Pp2= P-‘, then P-“= P-‘. By induction we have, 

P ‘~=(R:P”)=[(R:P”~‘):P]=(P~‘:P)=(R:P2)=P~2=P~’. 
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Next assume P = P2 and that Q is a proper P-primary ideal of R such that 
P ~ ’ = Q ‘. Again by induction we have, 

Q-H=(R:QH)=[(R:Qfl~‘):Q]=(P~‘:Q)=(R:PQ)=[(R:Q):P] 

=(Q-‘:P)=(P-‘:P)=(R:P’)=(R:P)=P-’. 

Recall that in Proposition 2.1 we proved that any valuation domain 
satisfies TP. Since any semilocal Priifer domain satisfies (# # ) [9, 
Corollary 31, we point out that our next theorem significantly generalizes 
Proposition 2.1. 

THEOREM 4.2. Let R be a Priifer domain satisfying (# # ). Then, R is a 
TP domain if and only if the noninvertible prime ideals of R are linearly 
ordered. 

ProoJ (3) First, assume that R has at least one noninvertible 
maximal ideal. By Proposition 2.10, we see in this case that R must have a 
unique noninvertible maximal ideal IV,, and that each nonmaximal prime 
ideal of R is contained in M, (nonmaximal prime ideals are noninvertible). 
Hence, the noninvertible prime ideals of R are linearly ordered. 

Now suppose that each maximal ideal of R is invertible and let P, Q be 
two nonmaximal, hence noninvertible, incomparable prime ideals of R. 
Consider, 

Y(PQ) = (f’Q)(PQ) ’ = (f’Q)(P n Q) -’ 
=(PQ)(P-'+Q-') [ 11, Lemma 3.71 

=PP-‘Q+QQ-‘P 

=PQ+PQ [ 11, Theorem 3.81 

= PQ. 

This is in contradiction with the TP property, since r(PQ) is not equal to R 
or a prime ideal of R. 

(+) Let {M,} be the set of invertible maximal ideals of R, and let M, 
be the unique noninvertible maximal ideal of R (if it exists). Let Z be a non- 
zero ideal of R and we may assume II-’ # R. We shall consider two cases. 

Case 1. The minimal prime ideals of II-’ are maximal ideals. 

First, we claim that no M, can be minimal over II-‘. Suppose some M,, 
is minimal over ZZ- ‘. Then, 

R 5 M,‘c (II-‘)-‘. (*I 
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Write {M,} u {M,} = {N,) u (K, j, where the members of {NB} are 
maximal ideals of R containing ZZ ‘, and the members of {K,} are 
maximal ideals of R not containing II-‘. Hence, as (II-‘) ’ is a ring 
(Remark 2.3), and since each N, is minimal over ZZ -‘, we have by [ 11, 
Theorem 3.21, 

(**) 

contradicting (*). Therefore, under the assumption of Case 1, no M, is a 
minimal prime ideal of II- ‘. Thus in this case, the only possibility is that 
M, is the unique minimal prime ideal of II-‘, and so Q = II- ’ is M,- 
primary. 

We now claim that II- ’ = M,. Assume otherwise, i.e., ZZ ’ = Q 5 M,. 
Note that P, = n;=, Q” is a prime ideal of R properly contained in M, [7, 
Theorem 23.31, and r(Q) = R,, n (fl, Ricl,) [7, Exercise 11, p. 3311, where 
T(Q) is the ideal transform of Q. However, by applying [IS, Theorem 3, 
Corollary 2; 11, Corollary 3.43 we have, 

“g, Q-l’= T(Q) 3 R= M,‘. 

From this, with the aid of Lemma 4.1, we deduce that MC’ c Q -‘, and 
thus 

This is a contradiction, since by (**), (II-‘) ’ = R. Therefore ZZ- ’ = M,, 
and Case 1 is complete. 

Case 2. There exists a nonmaximal prime ideal P that is minimal over 
zz- ‘. 

Since the noninvertible prime ideals of R are linearly ordered by 
assumption, we note that M, (if it exists) is not minimal over II ’ 
(Proposition 2.10). Moreover, we claim that no M, is minimal over II- ‘. 
To see this, suppose that some M,, is minimal over ZZZ’. Then M1;’ c 
(II- ’ ) ’ c Ricl,, [ 11, Theorem 3.21, and so M,, M; ’ c M,, R,=, . This is a 
contradiction, as M,, is invertible. Therefore, by applying Proposition 2.10, 
we see that P = rad.(ZZ- ‘). 

Now, we claim that II- ’ is contained in no proper P-primary ideal of R. 
Suppose otherwise; i.e., ZIP ’ c Q 5 P, where Q is P-primary. Hence, 
P-‘cQ-’ c (ZZZ’))‘, and we may write 

and 
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where iJ,,>, IL,,) are, respectively, the sets of maximal ideals of R not con- 
taining P, and those not containing II- ’ [ 11, Theorem 3.21. Note that the 
maximal ideals in each of these sets must be invertible, and that {L,} c 
{J,,). Moreover, {.Z,,) c {L,,}. This inclusion follows, since if II ’ c J ,,,, 
then J,,, is minimal over II- ‘, which we have seen cannot happen. 
Therefore P ’ =Q ‘=(ZZ ‘) ‘. 

To reach our desired contradiction we will prove that P ’ # Q ‘. Let 
P,, = n,:=, Q”, and as before, P, is a prime ideal of R properly contained in 
P [7, Theorem 23.31. It suffices, by Lemma 4.1, to show that P-’ 5 T(Q). 
By (+ ), we know that P ~’ = R,n ((7,, R,,,), and it is straightforward to 
see that Z(Q)= Rp,,n (n,, R,,,) [7, Exercise 11, p. 3311. The (# #) 
property gives us that r(Q) ~5 R, [9, Theorem 31, [9, Corollary 11, and 
so Pp’=R, n (n,, RJr) 5 R, n (fl, R,,,) = T(Q), the desired contradic- 
tion. Therefore, II- ’ is contained in no proper P-primary ideal of R. 

Now, we claim that P is a maximal ideal of the ring P ’ = (P : P). Note 
that P is a prime ideal of P ’ [7, Theorem 26.11. Suppose P is not a 
maximal ideal of Pm ’ and say P s Q, where Q is a prime ideai of P ‘. 
Using the (# # ) condition in combination with [S, Proposition 11 and 
Lemma IO] it follows that Q n R blows up in P--l, a contradiction. 

To complete Case 2, and hence the proof of this theorem, we will show 
that ZZ ’ = P. Set J=ZZ ‘, and recall that J is not contained in any proper 
P-primary ideal, rad.( J) = P, and J ’ = (J : J) = (P : P) = P ‘. With the 
aid of [7, Theorem 26.11, it is straightforward to prove that rad, I(J) = P. 
Hence, J is a P-primary ideal of Pm’, and so J=JnR is a P=PnR- 
primary ideal of R. Therefore, J = ZZ ’ = P, and the proof is complete. 

Now, we would like to show, by way of an example, that Theorem 4.2 
does not remain valid if the ( # # ) property is deleted. (It is interesting to 
note that the (# #) condition was not used in the necessity part of the 
proof. ) 

EXAMPLE 4.3. In [ 10, Sect. 61, Gilmer and Huckaba constructed an 
almost Dedekind domain R that is not Dedekind. It follows that R does 
not satisfy property (# ), and hence does not satisfy property (# # ) [IS, 
Theorem 31. The set of maximal ideals of R is (AV~},~: 0, where M, is not 
finitely generated and M, is principal for each i 2 1. Hence, as dim(R) = 1, 
we have that the noninvertible prime ideals of R (namely, M,) are linearly 
ordered. It remains to show that R does not satisfy TP. First, note that 
M, ’ = R, [ 11, Corollary 3.43 and so M, ’ = R. Second, we have M, # M{, 
as ho is a Dedekind domain. Therefore, y(Mi) = MiM, z = Mi, which is 
not a prime ideal of R. 

Our next theorem (Theorem 4.6) characterizes the TP property in the 



TRACE PROPERTY 181 

setting of finite dimensional Priifer domains, We need some additional 
information before proving this result. 

In [ 111, Huckaba and Papick proved that if P is a nonmaximal prime 
ideal of a Priifer domain R, then P ’ = (P : P); i.e., P ’ is a ring. In 
general, we do not know that if I is an ideal of a Prtifer domain R, and I ’ 
is a ring, then I ’ = (I : I). The next lemma provides a partial solution to 
this problem. 

bMMA 4.4. Let R be u Priifitr domuin and I u nonzero primur), ideal of 
R. JfI ’ is a ring, then I ’ = (I : I). 

Proof: We know that I ’ = (0, R,?,) n ( n,j R,,<) where {P,} is the set 
of minimal prime ideals of I, and jM,{} is the set of maximal ideals of R 
not containing I [ 11, Theorem 3.21. Let [N;,} be the maximal ideals of R 
containing I, and let u E I ’ and a E I. It suffices to show that au E ZR,,., for 
each ?;. Given any 7, there exists an tl such that Zc P, c N,.. Write u i r/s, 
where rc R and SE R\P,. We claim that U/SE R,,, , for if not, then s/a= 
t E R, Hence, s = at E P, R, n R = P,, which is impossible. Whence, 
u/s E R, Therefore, 

since I is a primary ideal of R. The proof of the lemma is now complete. 

LEMMA 4.5. Let R be a Prtifer TP domain. [f P is a branched prime ideal 
qf R, and if (M,) is the set sf maximal ideals of R that do not contain P, 
then there exists a,finitely generated ideal I of R such that IC P and I ~5 M, 
,for each ct. 

Proc?f: Let P be a branched prime ideal of R and assume that there 
does not exist an ideal I of R satisfying the conclusion of the lemma. By [IS, 
Corollary 21 n3 RMz c R,, and thus P~~‘=R.n(n.R,~)=n.R,~ [ll, 
Theorem 3.21. Since P is branched, there exists a proper P-primary ideal Q. 
Let P, = 0 Q’ and recall that P, is a prime ideal of R with P,, q P [7, 
Theorem 23.31. Thus, 

Therefore, P ’ = T(Q) and so P-‘= Q-‘. Hence Q-’ is a ring, and by 
Lemma 4.4 we know that QQ-’ = Q. The TP property implies that Q is a 
prime ideal, which is a contradiction. 

We are now ready for the promised characterization. 
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THEOREM 4.6. Let R he a finite dimensional Priifer domain. Then, R 
satisfies TP if and only if R satisfies (# #) and the noninvertible prime 
ideals qf R are linearly ordered. 

ProoJ: (e) This direction follows from Theorem 4.2 without the finite 
dimensional assumption. 

( =s) The proof of Theorem 4.2 shows that the noninvertible prime 
ideals of R are linearly ordered, and Lemma 4.5 in combination with [9, 
Theorem 31 establishes that R has the (# # ) property. 
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