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1. Introduction 

Let P be a prime ideal of a Prtifer domain R. In [3] we studied when P is a 
divisorial ideal; i.e., when (P- ‘)- ’ = P. If P is a maximal ideal, then it is known 
that P is divisorial if and only if P is finitely generated, [lo, Corollary 3.41. When 
P is a non-maximal prime ideal, we gave several sufficient conditions for P to be 
divisorial, [3]. However, the characterization of non-maximal divisorial prime ideals 
was left open. 

In Section 2 of this paper, we estabish in Proposition 9 the desired characteriza- 
tion of divisorial prime ideals. Also, in Proposition 7, we give equivalent conditions 
for a non-idempotent prime ideal with the property that P-’ = T(P) to be 
divisorial, and in Theorem 8, we characterize those prime ideals for which each 
power is divisorial. 

In Cpptinn 3 annlir9tinnc 9re oiven fnr 9 cnmGol rlarc nf Priifnr Anrn~~;ne ln mar a.. “1ILl”‘l J, UppllrULlVllCl UlU b..bU 1”I u 0prru.a s.IUJO “A 1 1 U1b1 U”l‘lQlllD. 1‘1 pa- 

titular, for Priifer domains for which each overring satisfies (#), (see [6]), it is 
proved that the product of divisorial prime ideals is divisorial. Finally, examples are 
given to show that each prime ideal of a Priifer domain may be divisorial, yet not 
all ideals of the ring are divisorial. That is, there is no Cohen type theorem for 
divisorial ideals in Prufer domains. 
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main with quotient field K, and let Spec(R) denote the set of prime ideals of R. If 
PE Spec(R), let {A&) denote the set of maximal ideals of R that do not contain P. 
Define S=(n R,)nK. The ideal transform of P is T(P) = lJr=, (RK: P”). When 
no ambiguity may arise, write (R : I) instead of (RK: I). For the prime ideal P, 
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define PO = n;=, P”. It is well known that PO is a prime ideal in R and if P#P2, 
then PO is the unique prime ideal of R that is maximal with respect to being proper- 
ly contained in P. Finally, we follow the common practice of writing P, for (P-l)-’ 
and P-” for (P”)-‘. 

The following proposition collects the known results that are needed for this 
paper. 

Proposition 0. Let P be a non-maximal prime ideal in R. 
(A) [ 10, Theorems 3.2 and 3.8, and Prop. 3.91. The fractional ideal P- ’ is a 

ring, in fact, P- ’ =RprJ(n RMO)=(P:P). 
(B) [5, Ex. 11, p. 3311. The fbllowing ring inclusions hold: R G P- ’ c T(P) G S. 
(C) [3, Theorem 2.11. If P- ’ #S, then P is a divisorial ideal. 
(D) [6, Corollary 21. A necessary and sufficient condition for P- ’ z S is the ex- 

istence of a finitely generated ideal I such that I G P and Ig M,, for each a. 
(E) [3, Theorem 3.11. If P- ’ # T(P), then: 

(i) T(P) is a minimal extension of P- ‘; i.e., there are no rings properly between 
P- ’ and T(P). 

(ii) P is an invertible prime ideal of P- ’ . 
(iii) P is a divisorial prime ideal of R. 
(iv) T(P) = n R,, where (Qa> is the set of prime ideals of R not containing P. 
(v)P-“=(R:P”)isnotaringforn>1. 

2. Powers of prime ideals 

We begin with two elementary lemmas. 

Lemma 1. Let M be a maximal ideal of R. Then M” is a divisorial ideal for each 
n L 1 if and only if M is finitely generated. 

Proof. (=+) Use Corollary 3.4 of [lo]. 
(*) If M is finitely generated, so is M”. Thus each M” is an invertible ideal of 

R. Cl 

Note that for each prime ideal P of R, 

R: fi (R:P”) = fi [R:(R:P”)]= fi (P”),. 
f?=l 1 n=l fI=l 

Thus we have proved the following lemma: 

Lemma 2. If PE Spec(R), then (R : T(P)) = n;=, (P”), . 

Proposition 3. Let PE Spec(R). Then P” is divisorial for each n L 1 if and only if 
(R : T(P)) = PO. 
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Proof. (a) By Lemma 2, PO= n P” = n (P”)” = (R : T(P)). 

(I) There are three cases to consider. 
Case 1. Assume that P=M is a maximal ideal of R. Note that Rs;M- ‘. For sup- 

pose that R = AK ‘. Then by induction on n, we have 

M-“=(R:M”)=[(R:M):M”-‘]=(R:M”-‘)=M-’”-’)=R. 

Thus, T(M) = U M-” = R. But this contradicts the hypothesis that (R : T(M)) = 

Mo$ R. It follows from Corollary 3.4 of [lo] that M is finitely generated. Lemma 
1 completes the proof of this case. 

Case 2. Assume that P is a non-maximal prime ideal of R such that P-’ = T(P). 
Then PO = (R : T(P)) = (R : P- ‘) = P,. Thus, P=P” = P, for each n L 1. 

Case 3. Assume that P is a non-maximal prime ideal of R such that P- ’ 5 T(P). 

From Proposition 0, P-l is an overring of R, P is divisorial in R, and. P is an inver- 
tible prime ideal in P- ‘. Using these facts, we see that 

(P”),=R:(R:P”)=R:((R:P):P”-‘) 

=R:(P-‘:P”-‘)=R:(P-‘:P”-‘)P-’ 

=(R:P-‘):(P-‘:P”-‘)=(P:P-“). 

Let z E (P”)“. Then zP-” G P, and so zP-“P”- * c PP”- ’ = P”. Hence Zp- ’ c P”, 
since Pn-’ is invertible in P- ‘. Therefore, ZE P” and thus (P”)“= P”. ??

Corollary 4. Each power of a prime ideal P is a divisorial ideal of R if and only if 
P2 is a divisorial ideal of R. 

Proof. Assume that P2 is a divisorial ideal of R. If P= M is a maximal ideal of R 
and if M is not finitely generated, then M- ’ =AK2 = R, so AI2 is not divisorial, a 
contradiction. Now apply Lemma 1. Let P be a non-maximal prime ideal of R. If 
P-l = T(P), then Case 2 of Proposition 3 shows that P2 = P. Hence P” = P is 
divisorial for each n. If P- ’ $ T(P), Case 3 of Proposition 3 gives the desired con- 
clusion. Cl 

If a prime ideal P is divisorial, is P” divisorial for each n 1 I? The example 
presented below gives a negative answer to this question. 

Example 5. We construct a Prtifer domain R with a divisorial prime ideal P such 
that P# P2, yet P- ’ = T(P). It follows that (P2),= P (see Proposition 7); and 
hence P2 is not divisorial. 

Let S be the ring of entire functions. It is well known that S is a Bezout domain. 
We use the notation and results from M. Henriksen [8,9]. Let M be a maximal free 
ideal of S and let K = S/M. The field K is a proper extension of the complex numbers 
C. Hence, if t E K is transcendental over C and if V0 is a nontrivial valuation do- 
main on C(t), then V0 can be extended to a nontrivial valuation domain V on K. 
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Consider the pull-back 

(*) 

where @ is the canonical homomorphism and the vertical arrows are inclusion maps. 
The ideal M is the conductor of S relative to R, so R and S have the same quotient 
field. It follows from properties of pullbacks that M is a non-maximal prime ideal 
in the domain R, [2]. 

If P~Spec(s), then RPnR = S,. (If PPM, then the equality holds by [2, p. 3351 
or [ 11, p. 461. If P > M, that is P = M, let s E S. From the pullback (*) we know that 
V= R/M and that the quotient field of Vis K = S/M. Thus s + M = (r + M)/(r’+ M), 
where r, r’E R and r’e M. Then sr’- r = m E M which implies that s = (r + m)/r’ E R,. 
Therefore, S,= RM.) We have proved that S is a flat R-module. We claim that R 
is a Prufer domain. Let Z be a finitely generated ideal of R. We need only show that 
Z is R-projective. But Z is R-projective if and only if ZgR S is S-projective and 
Z/MI is R/M-projective, [ 12, Theorem 1.11. Since S is a flat R-module, ZQR S= IS, 
and since S is a Priifer domain, IS is a projective S-module. For the second condi- 
tion, note that (ZM)S=Z(MS) =ZM. Thus 

Z/ZM c ZWZMS z IS& S/M, 

which is a vector space over S/M. It follows that Z/ZM is a finitely generated torsion- 
free R/M-module and by [l, p. 133],Z/ZM is a projective R/M-module. This proves 
the claim. 

Let Q = n M”. It is known that Q is a prime ideal of S, and hence of R, that is 
properly contained in M. Treat both Q and M as R-ideals. Thus Q- ’ means (R : Q) 
instead of (S : Q). By Proposition 0, Q-l = Ren(flMo,, R,J. Let N, be the uni- 
que maximal ideal in S such that N,f) R = M, . We have 

since S is the ring of entire functions, the set of fixed maximal ideals of S is contain- 
ed in {N, } , and RpnR = Sp for each PE Spec(S). Thus, QV = R : (R : Q) = (R : S) = M. 
Therefore, R$Q-’ and Qv#Q. 

It is easy to see that M- ’ =S, so M,= M; i.e., M is a divisorial ideal in R. BY 
[% P- 1331, 

Thus A4 is the prime ideal of R with the desired properties. 
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Remark 6. A question that arose from our earlier study of prime ideals [3], was 
whether P being divisorial is equivalent to PM1 being different from R. The ideal 
Q in Example 5 shows that this is not the case. 

The next result characterizes those divisorial prime ideals of R that arise as in 
Example 5. 

Proposition 7. Let P be a non-idempotent prime ideal of R. Then the following con- 
ditions are equivalent: 

(1) P=(P”),, for each nz 1. 
(2) P=P, and P2#(P2),. 
(3) R$P-’ = T(P) and (R : T(P)) = P. 
Furthermore, if P satisfies any, and hence all, of these equivalent conditions, then 

P is not a maximal ideal of R. 

Proof. Suppose that Mis a maximal ideal of R satisfying either (l), (2), or (3). Then 
M is finitely generated. Therefore M2 is divisorial, a contradiction. 

(1) * (2). Clear. 
(2) =$ (3). Since P is a divisorial ideal, R $ P- ‘. Case 3 of Proposition 3 implies 

that PA1 = T(P). Thus, P= P, = (R : P-‘) = (R : T(P)). 
(3) =+ (1). Since P- * = T(P), it follows that P-“=P-‘. Thus, 

(P”),=P”=(R:P-‘)=(R: T(P))=P. Cl 

We are ready for the main theorem. 

Theorem 8. Let P be a prime ideal of a Ptifer domain R. The following conditions 
are equivalent: 

(1) P” is divisorial, for each n ~1. 
(2) (R : T(P)) = PO. 
(3) P2 = (P2)“. 
(4) Either (a) P- ’ 5: T(P), or (b) P is a divisorial idempotent ideal. 

Proof. We have already proved that (l), (2), and (3) are equivalent. 
(1) =$ (4). Assume that P- ’ = T(P). Clearly R $ P- ’ = T(P) and (R : T(P)) = P. 

Thus P is an idempotent ideal of R, or else Proposition 7 is contradicted. 
(4) * (3). First assume that P is a non-maximal prime ideal. If PA1 $ T(P) 

use Case 3 of Proposition 3. If P= P2 and P is divisorial, obviously P2 = (P2&. 
If P is a maximal ideal of R, then (b) cannot hold. Thus P- ’ s T(P) implies P is 
finitely generated. 0 

We end this section by characterizing those prime ideals of a Prufer domain that 
are divisorial. 
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Proposition 9. Let P be a prime ideal of a Priifer domain R. Then P is divisobial 
if and only if either P- ’ f T(P), or (R : T(P)) = P. 

Proof. (* ) Assume that P is a divisorial prime ideal such that P- ’ = T(P). Then 
P=P,=(R: P-‘)=(R: T(P)). 

(*) If P-‘Z T(P), use Case 3 of Proposition 3. If P-’ = T(P), then P= 
(R: T(P))=(R: P-‘)=P,. 

3. Applications 

Let Max(R) be the set of maximal ideals of R. Define R to be a (#)-domain if 
di and A2 are distinct subsets of Max(R), then nMEd R,# nMEd RM. Say that R 
is a (# #)-domain in case each overring of R is a (&)-domain. These rings were 
studied by Gilmer and Heinzer in [6]. They proved that R is a (# #)-domain if and 
only if for each prime ideal P of R, there exists a finitely generated ideal A c P such 
that each maximal ideal of R containing A contains P. It is shown in [lo, Proposi- 
tion 3.1 l] that if R is a (# #)-domain, then each non-maximal prime ideal of R is 
divisorial. We now give several other interesting properties of (# #)-domains. 

Lemma 10. Let Ps Q be prime ideals of a Ptifer domain R. Then Q blows up in 
the ring P-l (i-e., QP-’ = P- ‘) if and only if there exists a finitely generated ideal 
I of R such that Ps I G Q. 

Proof. (=) If P- ’ # T(P), then P is an invertible prime ideal of P- ’ (Proposition 
0), and hence P is maximal in P- ‘. Thus, QP- ’ = P- ‘. Assume that P- ’ = T(P) 
and that PCIG Q for a finitely generated ideal I of R. Extending to P- ‘, P= 
PP- ’ c IP- ‘G QP- ‘, which implies that 

But (P-1:P)=P-2 and Pe2= P- ’ (since P- ’ = T(P)). Hence (P- ’ : ZP- ‘) = P- ‘. 

Since I is an invertible ideal in the Prufer domain P- ‘, this can only happen if 
IP-‘=P-‘. Therefore, P-‘=QP-‘. 

(a) Assume that QP-‘=P-‘. Write l= C CiUi, where CieQ and UiEP-l. Let 
I= (Cl ,...,c,,). Note that PslcQ, since if PEP, thenp= C ci(Rui)EZ. Cl 

Say that R has the separation property if for each pair of prime ideals Ps Q there 
exists a finitely generated ideal I such that P$ I c Q. 

Proposition 11. If R is a (# #)-domain, then R has the separation property. 

Proof. It suffices to show that for each non-maximal prime ideal P of R, P is max- 
imal in P- ‘. Suppose not. Say that P is a non-maximal prime ideal in the Prufer 
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domain P- ‘. Clearly the (# #) condition is inherited by overrings. Hence, P is 
divisorial as an ideal of P- ‘. It follows that Pm2 = (P- ’ : P) 2 P- ‘, thus P- ’ # T(P). 
Therefore, P is an invertible prime ideal in P- ’ (Proposition 0). This contradiction 
completes the proof. Cl 

From Example 5, we know that in an arbitrary Priifer domain that the product 
of divisorial prime ideals may not be divisorial. 

Proposition 12. Let R be a (# #)-domain. Then the product of finitely many 
divisorial prime ideals is a divisorial ideal. 

Proof. We first prove that if P is a divisorial prime ideal in a (# #)-domain R, then 
P2 is divisorial. We can assume that P is not a maximal ideal. If P- ’ # T(P), then 
Theorem 8 implies that P2 is divisorial. If P2 = P, there is nothing to prove. We are 
left with the case where P# P”, P-l = T(P). We prove that this cannot happen in 
a (# #)-domain. Suppose this situation does occur. Then 

R,n(n R,)=P-‘= T(P)=R,,n(R,). 

The (# #)-property implies there exists a finitely generated ideal A E P such that 
A $ZM,, for each a. By [6, Corollary 11, R,A(n R,,,,J # Rp,n(n RMJ, a contra- 
diction; hence the claim is established. 

Consider the product Pi’ - P:‘... P$, where the Pi are distinct divisorial prime 
ideals. Without loss of generality we may assume that the Pi are incomparable, and 
hence pairwise comaximal. For suppose that P& Pj. Then PiPj can be replaced by 
Pi, [5, Theorem 23.31. The claim and Corollary 4 imply that P,‘i is divisorial for 
i=l , . . ..n. Finally P:l. Pt... P: = n;=, PF; and the intersection of divisorial ideals 
is divisorial. Cl 

The converses of Propositions 11 and 12 are readily seen to be false. Let D be 
an almost Dedekind domain that is not Dedekind. Then D is not a (#)-domain, [4, 
Theorem 31. Since D is a one-dimensional ring, if Ps Q are prime ideals in D, we 
have P= (0) and Q is maximal. Hence, D is a separated domain. As for Proposition 
12, the nonzero divisorial prime ideals of D (same D as above) are the finitely 
generated maximal ideals of D. Clearly, the product of finitely many of these ideals 
is still finitely generated and therefore is divisorial. 

In [7], Heinzer characterized those Priifer domains for which every ideal is 
divisorial. The question remains as to whether there is a ‘Cohen type theorem’ for 
divisorial ideals - that is, if each prime ideal of R is divisorial is every ideal of R 
divisorial? The answer is negative. In particular, R may be a (# #)-domain in which 
each prime ideal is divisorial, yet there exist ideals of R which are not divisorial. Let 
V= (lJ [[Xl] = QJ +M, where UJ is the field of rational numbers and M=XV. Let 
R = Z + M, where Z is the ring of integers. Then R is a 2-dimensional Prtifer domain 
for which each maximal ideal is principal. In addition R is a (# #)-domain, [6]. The 
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prime ideal M of D is divisorial and is contained in each maximal ideal of D; hence, 
in infinitely many maximal ideals of D. Therefore, some ideal of D is not divisorial, 
171. 

We conclude this paper with two results: 
First, a technical sufficient condition for P= P, (Proposition 13); and second, a 

different characterization for P = P, in Prtifer domains of dimension I 2. 
Consider the following conditions on a prime ideal P. 

(4 

(i) There exists an ideal I such that Ps 12 R. 
(ii) If {Na) is the set of maximal ideals of R that contain P but 

not I and if (PK) is the set of minimal prime ideals of Z, then 
N,$ PK G U Ma for each fl and K. 

(iii) Neither ND nor P, is finitely generated. 

Proposition 13. If P is a non-maximal prime ideal of R such that P+I P,, then P 
satisfies (A). 

Proof. If P# Pv, then for every ideal I between P and P,, Z, = P, ; and hence 
I-’ = P- *. In particular, I- ’ is a ring. Thus, 

By Proposition 0, P# P, implies that P- ’ = n R,. It follows that 

(*) Rp,n(nR~~)=nR~==R~~n(nR~~) 
for each K and /?. From this we deduce that P,, Ns G U M,, for each K and 8. (To 
see this, suppose that f e PK \ U Ma. Then l/f E n RMu\ R, which contradicts 
(*). Therefore, P, C_ U M,.) Finally, part D of Proposition 0 implies that neither 
PK nor Ns is finitely generated. 

Proposition 14. Let R be a Priifer domain of dimension I 2 and let PE Spec(R). 
Then P=P, if and only if P-‘+R. 

Proof. (- ) Clear. 
(=) We need only prove this result for a non-maximal prime ideal P of R. We 

know that P-* = Rpr) (n R,,,,). Let {A$) be the maximal ideals of R containing 
P. Separate {Mp) into two disjoint sets (ME}, (Ma}, where P, c ME and P,gMa. 
If’P#P,, then each ME is a minimal prime of P,. By [lo, Theorem 3.21, 

K’=(n R&fVn R&n(n RMJ=R$P? 

Therefore, P, = P. 
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