
!"#$%&'()*+$&&,"%-)./)01.23,4$"-,."'()5.,"%23.1")3.4',"-
67#8.&9-:;)3'+,<)=>)3.??-)'"<)@'&A.)B."#'"'
C.7&A$;)D&.A$$<,"%-)./)#8$)64$&,A'")@'#8$4'#,A'()C.A,$#EF)G.(>)HHIF)J.>)K)9L7(>F)HMMN:F)OO>
PII2PPN
D7?(,-8$<)?E;)American Mathematical Society
C#'?($)QRS;)http://www.jstor.org/stable/2159211 .

6AA$--$<;)NTUHNUNVHV)VK;KK

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=ams. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of

content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms

of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society.

http://www.jstor.org



PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 115, Number 3, July 1992 

INTEGRAL OVERRINGS 
OF TWO-DIMENSIONAL GOING-DOWN DOMAINS 
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(Communicated by Louis J. Ratliff, Jr.) 

ABSTRACT. It is proved that if R is a 2-root closed two-dimensional going-down 
domain with no factor domain of characteristic 2, then each integral overring 
of R is a going-down domain. An example is given to show that the "2-root 
closed" hypothesis cannot be deleted. 

1. INTRODUCTION 

Let R be a (commutative integral) domain. As in [6, 12], we say that R 
is a going-down domain if R c T satisfies GD (in the sense of [17, p. 28]) 
for each domain T containing R. Natural examples of going-down domains 
include Priifer domains, domains of (Krull) dimension 1, and certain D + M 
constructions (cf. [12, Corollary]). In some respect, the class F of going-down 
domains is well-behaved; for instance, being a going-down domain is a local 
property (cf. [6, Lemma 2.1]). Moreover, certain subclasses of &' are known 
to be stable under integral extensions (cf. [15, Theorem 1.7; 10, Proposition 
2.6]). However, F is not stable under integrality. Indeed, by analyzing a 
construction of Heinzer-Ohm [16, p. 6], Dobbs showed in [7, Example 2.1] 
that an integral extension of a two-dimensional valuation domain need not be 
a going-down domain. By applying the classical D + M construction and [12, 

Corollary], we see for each n, 3 < n < oo, that there exists an n-dimensional 
R E F such that R has an integral overring which is not in W. (It follows 

from [8, Lemma 2.2(b)] that the domains R in these examples are, in fact, 
divided domains, an important type of quasilocal going-down domain studied 
in [8].) Our main purpose in this note is to present two results which clarify 
the situation in the two-dimensional case. 

In the positive direction, Theorem 2.2 shows that if R is a 2-root closed 
two-dimensional going-down domain (and, hence, locally divided, in the sense 
of [8]), and if R satisfies a mild condition (which holds if char(R) > 2), then 
each integral overring of R is in F . (The reader may wish to compare this 
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656 D. E. DOBBS AND MARCO FONTANA 

assertion with earlier results in the two-dimensional case: cf. [7, Corollary 3.5; 
9, ?3].) The work in ?2 depends in part on adapting a proof of Angermilller 
[3, Main Lemma]; the reader may find it helpful to have a copy of [3] at hand 
while reading Lemma 2.1(b). In a negative vein, Example 3.1 constructs a 

two-dimensional divided (and, hence, going-down) domain R (which is not 
2-root closed and may have arbitrary characteristic) having an integral overring 
which is not in W . The work in ?3 depends on pullback techniques, for which 
familiarity with [14] will be assumed. 

2. A POSITIVE RESULT 

We begin by collecting some results of Angermiiller. Lemma 2.1(a) simply 
restates [3, Lemma 1], while Lemma 2.1(b) follows from the proof of [3, Main 
Lemma]. (Our formulation of Lemma 2.1 (b) deletes the hypotheses in [3, Main 
Lemma] that A is one-dimensional Noetherian and that B is the integral clo- 

sure of A. To adapt the proof in [3], one also needs the well-known fact [5, 
Proposition 3, p. 329] that module-finite extensions of commutative rings sat- 
isfy the finite fiber property. For another extension of [3, Main Lemma], see 
[4, Lemma 2].) As usual, if n > 1 is an integer, a domain A is called n-root 
closed if A contains each element u of its quotient field such that un E A. 

Lemma 2.1 (Angermilller). Let A be an n-root closed domain for some integer 
n > 1, and let B be an overring of A. Then: 

(a) The conductor (A: B) is a radical ideal of B. 
(b) Assume, in addition, that (A, M) is quasilocal, B is module-finite over 

R, (A : B) = M, and that B/N has a primitive nth root of unity, for some 
maximal ideal N of B. Then (B, M) is quasilocal. 

It is convenient next to recall the following material from [8]. A domain R 

is divided if PRP = P for each prime ideal P of R; and R is locally divided 
if RM is divided for each maximal (equivalently, each prime) ideal M of R. 

Each locally divided domain is a going-down domain; the converse holds if R 

is root closed (indeed, by the proofs in [8], if R is seminormal), but is false in 

general. Also, a domain R is treed if Spec(R), as a poset under inclusion, is 

a tree. Each going-down domain is treed [6, Theorem 2.2]; but, as is shown by 
an example of W. J. Lewis (cf. [13, Example 4.4]), the converse is false. 

We may now state our main positive result. 

Theorem 2.2. Let R be a 2-root closed two-dimensional going-down domain 
with no factor domain of characteristic 2. Then each integral overring S of R 

is a going-down domain. 

Proof. For each maximal ideal M of R, RM is a 2-root closed going-down 
domain (of dimension at most 2, with no factor domain of characteristic 2). 
Moreover, it is easy to see that S E F provided that each SR\M E W. Thus, 
we may suppose that (R, M) is quasilocal. 

By integrality, we can view S as the direct limit of its family of module-finite 
R-subalgebras. Since [11, Corollary 2.7] establishes that direct limit preserves 

going-down domains, we may also suppose that S is module-finite over R. 

Consider the conductor I = (R : S) . By Lemma 2.1 (a), I is a radical ideal 
of S. Hence, I is a radical ideal of R. However, by the above remarks, R is 
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quasilocal treed with, say, Spec(R) = {0, P, M}, and so I E Spec(R). As S 
is a module-finite overring of R, I 7 0; that is, I is either P or M. 

Now, suppose that the assertion fails. Then there exists a domain V con- 
taining S such that S c V does not satisfy GD. Since R c V does satisfy 
GD, an easy diagram chase shows that some height 1 prime of R (namely, P) 
is not unibranched in S. (For this argument, one needs to observe that R c S 
satisfies INC and that dim(S) = 2. ) 

We claim that I :A P. Otherwise, consider A = Rp and B = SR\P. Since 

S is module-finite over R, we have (A: B) = IR\P = PRp . However, since R 

is a quasilocal 2-root closed (hence seminormal) going-down domain, it follows 
from the above remarks that R is a divided domain. In particular, PRp = P, 
and so (A: B) = P. By the hypothesis on R, no factor domain of B can 
have characteristic 2. Hence, we may apply Lemma 2.1(b) with n = 2, since 
A is 2-root closed and -1 + N is a square root of unity in any factor domain 
B/N. This yields that (B, P) is quasilocal, contradicting the fact that P is 
not unibranched in S. This proves the claim. Hence, I = M. 

We may again apply Lemma 2. 1(b), this time to R c S and n = 2, since 
no factor domain of S can have characteristic 2. This yields that (S, M) is 
quasilocal. It follows that each prime ideal of S is a prime ideal of R. (In fact, 
Spec(S) = Spec(R) as sets.) This contradicts the fact that P is not unibranched 
in S, thus completing the proof. U 

The most immediate application of Theorem 2.2 is the following. 

Corollary 2.3. Let R be a 2-root closed two-dimensional going-down domain of 
characteristic p > 2. Then each integral overring of R is a going-down domain. 

It will be shown in Example 3.1 that the "2-root closed" hypotheses in Theo- 
rem 2.2 and Corollary 2.3 (and the " n-root closed hypothesis" in Corollary 2.4) 
cannot be deleted. 

The hypotheses of Theorem 2.2 were chosen so that the proof would not be 
overly technical. One may well ask for variants that relate to the formulation 
of Lemma 2.1 (b) for arbitrary n > 2. In this regard, we close the section by 
offering the following result. 

Corollary 2.4. Let R be a two-dimensional going-down domain and S an over- 
ring of R. Assume that at least one of the following two conditions holds: 

(a) S is module-finite over R, andfor each nonzero prime ideal N of S, 
there exists an integer n > 1 such that R is n-root closed and the quotient field 
of S/N contains a primitive nth root of unity; 

(b) S is integral over R, and for each nonzero prime ideal P of R, there 
exists an integer n > 1 such that R is n-root closed and the quotient field of 
R/P contains a primitive nth root of unity. 

Then S is a going-down domain. 

Proof. Given (a), the assertion follows as in the proof of Theorem 2.2. Given 

(b), one first reduces to the case of module-finite S by using the fact that F is 
stable under direct limit; and the assertion then follows since, for module-finite 

S, (b) implies (a). O 
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3. A COUNTEREXAMPLE 

The main purpose of this section is to produce an example of a two-dimen- 
sional going-down domain R and a module-finite overring S of R such that 
S is not a going-down domain. In view of Theorem 2.2, one expects that a 
construction of such R should violate the "2-root closed" hypothesis. This is, in 
fact, how we proceed in Example 3.1, with a pullback construction that exploits 
the quadratic nature of the diagonal map A -) A x A for any commutative ring 
A. 

In the following discussion, it will be convenient to let (A, m, k) denote a 
quasilocal ring A with maximum ideal m and residue field k = A/m. 

Example 3.1. There exists a two-dimensional going-down domain R and a 
module-finite (hence integral) overring S of R such that S is not a going-down 
domain. It can be arranged that R have arbitrary (prime or zero) characteristic, 
indeed that R contain any preassigned field. It can also be arranged that either 
R be a divided domain or there exist u E S such that S = R[u]. 

Proof. Consider two incomparable DVRs, (V', m', K') and (V", mi", K"), 

of a field F. (For instance, if the desired R is to contain a given field k, take 
commuting algebraically independent indeterminates U and V over k, and 
consider F k(U, V), V' = k(U)[V](v), V" = k(V)[U](u), K' = k(U), and 

K" = k(V).) Put D = VIn V . By [17, Theorem 107], D is a one-dimensional 
Bezout domain (in fact, a PID) with but two maximal ideals, M' = m' n D and 
M'= mi" n D; and F is the quotient field of D. (Indeed, DM, = V' and 

DM1 = V".) Next, let (W', n', k') and (W", n", k") be two other DVRs 

having quotient fields K' and K", respectively. (For instance, take W' = 

k[U](u) and W" = k[V](v).) Consider also a DVR, (W, n, k), with quotient 
field K canonically isomorphic to both K' and K", so that W is canonically 
isomorphic to both W' and W" via isomorphisms that are compatible with 
the structures involving k and K. 

Let T' and T" be the two-dimensional valuation domains of F obtained 
via "Nagata composition" using the pullbacks 

T ) V' T1F" )V" 

W - K' and W" - K". 

(In such pullback diagrams, we generally assume that the horizontal maps are 
the canonical inclusions and the vertical maps are the canonical epimorphisms.) 
Put C = T' n T". Notice that we have a pullback diagram 

C D 

1 1 
W' x W1" D/(M' nM") K' x K" 

where the isomorphism in the bottom row is given by the Chinese Remainder 
Theorem. Since C and D have the common ideal M' n M", they have the 
same quotient field, F. 

Much more can be said about C, by using some results from [ 14]. Applying 
[14, Theorem 1.4] to the pullback diagram that defines C gives a topological 
description of Spec(C) with the following order-theoretic impact. C is two- 
dimensional; besides the prime 0, C has but two maximal ideals (say, N' and 
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N") and but two height 1 prime ideals (say, P' and P"), where P' c N', 

P" c N", P' =M' nC, and P" = M" nC. 

Consider the effect of applying [14, Proposition 1.9], by localizing the pull- 

back diagram that defines C at the multiplicative sets induced by (the comple- 

ment of) the prime P'. The result is a pullback diagram 

Cp'l - DM1 = V 

CP1 Dm VI1 
K' = Wj,\{0o K' 

It follows that Cp' = V'; similarly, Cp,, = V". 

Next, let a be the composition of canonical surjections, C -W' W' X 

W'. As ker(a) = M' n C = P', a standard isomorphism theorem gives Ci/P' 
W'; similarly, C/P" _ W" . Since a(N') = n', an isomorphism theorem gives 

N'IP' n'; similarly, N"/P"11 n". This leads to canonical identifications 

C/N' _ (C/P')/(N'/P') _ W'/n' -k' and, similarly, C/N" _ k". 
Next, we define B by the pullback diagram 

B *C 

k , I C(NI n N") _ k' x k" 

Notice that B has the same quotient field as C, namely, F. Applying [14, The- 

orem 1.4] to the above pullback diagram, we see that B is a two-dimensional 

quasilocal domain, with maximal ideal N' n N", and exactly two height 1 

primes, Q' = P' n B and Q" = P" n B. (In effect, the passage from C to 

B "glues" N' and N" together.) Notice that B is not treed, and so B is not 

a going-down domain. 
We can now define one of the rings whose existence is asserted in the state- 

ment of Example 3.1. Define A by the pullback diagram 

A C 

W - C/(P' n P") _ C/P' x C/P" _ W' x 

(The first isomorphism in the bottom row is available via the Chinese Remainder 

Theorem because P' and P" are comaximal in C.) As above, the quotient 

field of A is F. Also, one sees readily that A c B. (Indeed, if a e A, 

there exists c E C such that a - c E (P' n P") c (N' n fN"), whence a E B). 

Moreover, since the diagonal map allows us to view W' x W" as an integral 

extension of W, it follows from [14, Corollary 1.5(5)] or a direct calculation 

that C is integral over A; then, a fortiori so is B. 

The above succession of pullbacks has finally produced a two-dimensional 

treed quasilocal domain, namely, A, with quotient field F. In fact, we see 

by applying [14, Theorem 1.4] to the definition of A that the unique maximal 

ideal of A is N = N n A = N" n A, and the unique height 1 prime of A is 

Q = P' n A = P" n A = P' n P"I. (Hence, since A/Q is canonically isomorphic 

to W, we may identify their height 1 primes; that is, N/Q = n.) Moreover, 

since AcBc C,wehavethat Q=Q'fnA=Q"fnA. 

We next identify another important ring. Define E by the pullback diagram 

E *D 

1 1 
K ) D/(M' n M") 

- D/M' x D/M" ' K' x K". 
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Appealing to [14] as above, we see that E has quotient field F; and that E is 
quasilocal one-dimensional, with unique maximal ideal e = M' n E =M" flE = 

M' n M" . 
We claim that E = AQ. To see this, first juxtapose the pullback diagrams 

that defined A and C. The result is the pullback diagram 

A , D 

1 1 
W --- K DI D(MI n MI') -_ K' x K" 

where the maps in the bottom row are the canonical inclusion and the diagonal. 
Since E is the inverse image of K under the surjection from D to K' x K", 
we now have the pullback diagram 

A E 

1 1 
W K K=E/e 

Consider the effect of applying [14, Proposition 1.9], by localizing the above 
pullback diagram at the multiplicative sets induced by (the complement of) the 
prime Q. The result is a pullback diagram 

AQ E 

1 1 
K= W\{o} -* K 

It follows that AQ = E, as claimed. 
Next, we claim that A is a divided domain. It suffices to show that QAQ c 

A. It will be convenient to let J denote QAQ. Now, since Q = P' n A = 

PI' n A, we have 

E = AQ c Cp, n Cp,, = V' n V" = D. 

In particular, J c D. Notice that the surjection 7r: D -+ K' x K" sends Q to 
0 because Q c M' n M"l. Hence, 7t sends J = QE to 0. The definition of C 
yields that J c C; and that the canonical map from C to W' x W" sends J 
to 0. It follows from the definition of A that J c A, thus proving the claim 
that A is divided. 

Before identifying the required (R, S), we claim that B = A[ul, u2], for 
suitable elements ul, u2. For this, it is enough to observe that W' x W" 
is generated as a module over (the DVR) W by {(1, 0), (0, l)}, so that 
B/(P' n P") can be generated as a W-module by two elements. In particu- 
lar, B is module-finite over A. If one wants that A be divided, it suffices 
to take (R, S) = (A, B). It remains to consider the case where one wants S 
to be generated by one element as an R-algebra. For this, take (R, S) to be 
either (A[uI], B) or (A, A[uI]), according as to whether A[uI] is or is not a 
going-down domain. The proof is complete. EJ 

Remark 3.2. A question, raised in [13, p. 287], remains open: if R E A, must 
the integral closure of R also be in F ? One might try attacking this question 
by considering whether the total 2-root closure of R, in the sense of [2], is 
in W. In view of Theorem 2.2, the construction of the total 2-root closure [2, 
Proposition 1. 1], and the stability of F' under direct limit, an affirmative answer 
would follow if dim(R) = 2 (at least, in characteristic > 2) by showing that 
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R[u] e F for each u in the quotient field of R such that u2 e R. It seems 
to us that this latter assertion is implausible in general since, in the context 
of Example 3.1 with characteristic > 2, one can show that C = A[v1, v2], 
for suitable elements v1 , v2 such that each vi E A. It follows, under these 
conditions, that (the non-going-down domain) B is contained in the total 2-root 
closure of (the divided domain) A. 

The above points out an important fact, namely, that if R is a domain, ui 
elements of the quotient field of R such that u7 E R for some integer n > 1, 
and S an overring of R such that S c R[{ui}], then R c S need not be a 
root extension. (As in [1], an extension of domains R c S is a root extension 
if, for each s E S, there exists an integer n > 1 such that sn E R.) Indeed, if 
R c S is a root extension, then Spec(S) -- Spec(R) is a homeomorphism (cf. 
[1, Theorem 2.1]); then, since S is integral over R, [8, Lemma 2.3] assures that 
R E &' if an only if S E W'. However, the preceding paragraph (in conjunction 
with Example 3.1) produced an extension A = R c B = S c C = R[vl, v2] 
with v7 E R, R E W, and S not in W. Accordingly, this Spec(S) -- Spec(R) 

is not a homeomorphism, and R c S is not a root extension. The reader may 
construct different examples of this phenomenon by using rings of algebraic 
integers. 

The above discussion raises the question of determining conditions under 
which subrings of the total root closure of a going-down domain are them- 
selves going-down domains. By way of motivation/contrast, we observe, via 
[8, Lemma 2.3], that if S is the seminormalization (resp., weak normaliza- 
tion) of a going-down domain R, then S is a going-down domain, since 

Spec(S) -- Spec(R) is a homeomorphism. 
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