AMERICAN MATHEMATICAL SOCIETY MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

MR2248168 (Review) 13F05 Fontana, Marco (I-ROME3); Picozza, Giampaolo (I-ROME3)

Prüfer *-multiplication domains and *-coherence. (English summary)

Ric. Mat. 55 (2006), *no. 1*, 145–170.

In this article the authors introduce the notion of a \star -domain, where \star is a semistar operation, and use this notion to characterize Prüfer \star -multiplication domains in terms of \star -domains satisfying various coherent-like conditions involving the \star operation. A semistar operation on a domain Dis a map \star from the set of all nonzero D-submodules of the quotient field K of D into itself such that for all such submodules E and F, $(xE)^{\star} = xE^{\star}$ whenever x is a nonzero element of K; $E \subseteq$ F implies $E^{\star} \subseteq F^{\star}$; $E \subseteq E^{\star}$; and $(E^{\star})^{\star} = E^{\star}$. The domain D is a \star -domain if $(II^{-1})^{\star} = D^{\star}$ for each nonzero finitely generated D-submodule I of K. The domain D is a Prüfer \star -multiplication domain if for each nonzero finitely generated ideal I of D, D^{\star} is the union of the D-modules F^{\star} , where F is a finitely generated D-submodule of II^{-1} . Thus, when \star is the classical v-operation, a \star -domain is simply a v-domain, and a Prüfer \star -multiplication domain is a Prüfer v-multiplication domain.

The authors give a detailed and interesting analysis of *-domains and Prüfer *-multiplication domains. They observe in Proposition 1 that a Prüfer *-multiplication domain is always a *-domain, and they show that in order for the converse to hold, some form of coherency is needed. In particular, they introduce several new notions of coherent-like conditions via the *-operation. To mention one such example: A domain D is *-extracoherent if for all finitely generated nonzero D-submodules E and F of K, there exists a finitely generated D-submodule J of $E \cap F$ such that $J^* = E^* \cap F^*$. (Taking * to be the d-operation, one obtains the usual notion of a coherent domain.) Then a domain D is a Prüfer *-multiplication domain if and only if D is a *-extracoherent *- domain (Theorem 2). Several other natural *-versions of coherency are also shown to yield similar characterizations.

A final section of the paper examines the relationship between the classes of Prüfer \star multiplication domains and $H(\star)$ -domains, those domains such that each nonzero ideal I of Dwith $I^{\star} = D^{\star}$ has a finitely generated subideal J that satisfies $J^{\star} = D^{\star}$.

Reviewed by Bruce Olberding

© Copyright American Mathematical Society 2007

Citations