Capitolo 5

Estensioni di valutazioni ed indici di ramificazione

Proposizione 5.1. Sia E un'estensione finita di un campo K, con [E:K]=n. Sia w una valutazione di E con gruppo dei valori Δ . Denotiamo con v la valutazione $w \mid_K$ di K e con Γ il suo gruppo di valori. Allora, Γ è un sottogruppo e l'indice di Γ in Δ soddisfa alla seguente disuguaglianza:

$$[\Delta : \Gamma] \leq n.$$

Dimostrazione. Supponiamo che i gruppi di valori Δ e Γ delle valutazioni w e v abbiano notazione additiva. Dal fatto che $v=W\mid_K$ si ha che Γ è un sottogruppo di Δ . Siano $y_1,\ldots,y_e\in E^*,\,e\geq 1$, tali che:

$$w(y_i) + \Gamma \neq w(y_j) + \Gamma$$
, per $1 \le i \ne j \le e$.

Facciamo vedere allora che y_1, \ldots, y_e sono linearmente indipendenti su K. Se fosse

$$\sum_{i=1}^{e} a_i y_i = 0 \quad \text{con } a_i \in K, \ \exists i_0 \ a_{i_0} \neq 0$$

allora necessariamente dovrebbero esistere due indici $i\neq j,~1\leq i,j\leq e,$ in modo tale che:

$$w(a_i y_i) = w(a_i y_i)$$
 (cfr. Proposizione 3.12)

quindi $w(y_i) = v(a_j a_i^{-1}) + w(y_j)$ e ciò contraddice l'ipotesi fatta sugli elementi y_1, \ldots, y_e .

Definizione 5.2. Conserviamo le notazioni ed ipotesi della Proposizione 5.1. Allora, l'intero $e = [\Delta : \Gamma]$ è detto *indice di ramificazione di w rispetto a v*. In breve scriveremo:

$$e:=e(w,v):=[\Delta:\Gamma]\,.$$

Corollario 5.3. Sia e = e(w, v) l'indice di ramificazione di w rispetto a v (conservando le ipotesi e le notazioni della Proposizione 5.1).

(a) L'applicazione:

$$\begin{array}{ccc}
\Delta & \longrightarrow & \Gamma \\
\alpha & \longmapsto & ee
\end{array}$$

è un omomorfismo iniettivo di gruppi.

(b) Δ è un gruppo ciclico infinito se, e soltanto se, Γ è un gruppo ciclico infinito.

Dimostrazione. (a) segue dalla Proposizione 3.5 e (b) è immediato.

Definizione 5.4. Conservando ipotesi e notazioni della Proposizione 5.1, se $(B, \mathfrak{n}, k(B))$ è l'anello della valutazione w e se $(A, \mathfrak{m}, k(A))$ è l'anello della valutazione v, allora dal fatto che $v = w \mid_K$ segue che (B, \mathfrak{n}) domina (A, \mathfrak{m}) e quindi k(B) è una estensione di k(A). Chiamiamo grado residuo di w rispetto a v l'intero:

$$f := f(w, v) := [k(B) : k(A)].$$

Osservazione 5.5. Siano $K_1 \subseteq K_2 \subseteq K_3$ tre campi e sia v_3 una valutazione di K_3 . Denotiamo con v_1 e v_2 le restrizioni di v_3 a K_1 e K_2 , allora è immediato verificare che:

$$e(v_3, v_1) = e(v_3, v_2) \cdot e(v_2, v_1);$$

$$f(v_3, v_1) = f(v_3, v_2) \cdot f(v_2, v_1).$$

Proposizione 5.6. Sia E un'estensione finita di K e sia w una valutazione di E. Denotiamo con v la valutazione w $|_{K}$. Sia $(B, \mathfrak{n}, k(B))$ l'anello della valutazione w e sia $(A, \mathfrak{m}, k(A))$ l'anello della valutazione v. Allora,

$$e(w,v) \cdot f(w,v) < [E:K]$$

(quindi, in particolare, anche il grado residuo f(w,v), oltreché l'indice di ramificazione e(w,v), è finito).

Dimostrazione. Siano $y_1, \ldots, y_e \in E^*$ tali che:

$$w(y_i) + \Gamma \neq w(y_j) + \Gamma \quad 1 \leq i \neq j \leq e$$

(dove Γ è il gruppo della valutazione v). Siano, poi, $z_1, \ldots, z_r \in B$ tali che le loro classi laterali (mod \mathfrak{n}) siano linearmente indipendenti su k(A), dunque $r \leq f$. Supponiamo che:

$$\sum_{h=1}^{e} \sum_{k=1}^{r} c_{hk} y_h z_k = 0, \quad \text{con } c_{hk} \in K$$

dove i coefficienti c_{hk} supponiamo non siano tutti nulli. Facciamo vedere che arriviamo ad un assurdo (da cui seguirà che $e \cdot f \leq [E:K]$).

A meno di un possibile riordinamento degli indici possiamo supporre che

$$v(c_{11}) = \min \{ v(c_{hk}) \mid 1 \le h \le e, \ 1 \le k \le r \}$$

dunque $d_{hk}:=\frac{c_{hk}}{c_{11}}\in A,$ per $2\leq h\leq e$ e $2\leq k\leq r.$ Consideriamo l'elemento

$$\beta := z_1 + \sum_{k=2}^r d_{hk} z_k \in B$$

L'elemento $\beta \in B \setminus \mathfrak{n}$ (perché altrimenti le classi laterali di $z_1, \ldots, z_r \mod \mathfrak{n}$ sarebbero linearmente dipendenti su k(A)). Pertanto,

$$w\left(\sum_{k=1}^{r} c_{hk} z_k\right) = w(c_{11} \cdot \beta) = w(c_{11}) + w(\beta) = v(c_{11})$$

(perché $w(\beta) = 0$).

D'altronde

$$\sum_{h=1}^{e} \left(\sum_{k=1}^{r} c_{hk} z_k \right) y_h = 0$$

quindi, debbono esistere due indici $1 \leq i \neq j \leq e$ in modo tale che:

$$w\left(\left(\sum_{k=1}^{r} c_{ik} z_k\right) y_i\right) = w\left(\left(\sum_{k=1}^{r} c_{jk} z_k\right) y_j\right)$$

(cfr. Proposizione 3.12), ovvero

$$v(c_{11}) + w(y_i) = v(c_{11}) + w(y_j)$$

e ciò è assurdo per la scelta di y_1, \ldots, y_e .