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This following work illustrates several mathematical models useful in analysing
the phenomenology of the development of epidemics in a population.
The emphasis will be placed on the mathematical analysis and on the numeric
treatment of the phases of the development of epidemics, in which the inhabitants
can be exposed, with a specific application to the measles disease in hypotheti-
cal inhabitants, in a predetermined interval of time and in a specific geographical
area. A mathematical model where the ” force of infection” is present will be

particularly analyzed along with the effect the "in formation” contains.

The term epidemic comes from the Greek words "epi”’, meaning on, and ”démos”,
meaning people/population. Therefore epidemic means the diffusion of an infec-
tious disease in a population, in an elevated number of cases, in a limited period
of time. In order for a disease to develop, it’s necessary that the process of con-
tagiousness between people is relatively easy. What essentially characterises an
epidemic is the duration of the specific disease, the period of contagiousness, and
the quantity of people infected.

An epidemic is different than an endemic, which derives from the Greek words
"en” | meaning in, and , ”démos” meaning people/population. An endemic, there-
fore, designates the existence of an infectious disease that is constantly present in
a specific population or in a particular geographic area and that can disappear by
eliminating the cause (for example by drying up the swamps and thus eliminating
malaria).

An epidemic is also different than a pandemic, from the Greek words "pan”, mean-
ing all, and "démos”, meaning people/population, which is an epidemic that strikes
several geographic areas in the world, with an elevated number of serious cases and
a high death rate (for example the Spanish influenza in 1918, the Asian influenza

in 1957, the Hong Kong influenza, the HIV of 1969, and the SARS of 2003).

An epidemics originates with the presence of a pathogenic agent, like a fungus,



a virus, a bacteria, or a living thing.

The principal factors that influence the differences between risk of infection in dif-
ferent situations are: the characteristics of the population, which are the major or
minor susceptibilities to infections depending on age, the presence of concomitant
pathologies, the strength of the immune system or the presence of an infectious
disease in the community.

The determining factor of the diffusion of an epidemic is the contact, which can
be direct, when it happens between individuals of the same species (such as
measles), or indirect, when there is an interposition of an intermediate guest (such
as malaria).

Epidemics can be transmitted as follows:

beginning with one source of infection, in general represented by products or

contaminating devises;

from an environmental cistern of infection. For example a common source can

be the city water system;

associated with carriers: the most frequent mechanism of transmission happens

due to the hands of carriers that contain microbes or are infected;

from person to person, depending on the common modality of transmission of

the infections: through the airways, through microscopic drops of saliva, or
simply by direct contact between an infected and a healthy person, or indirect
contact through objects that are easily exposed to contamination(bathroom,

door handles, handrails, etc.)

A particular epidemic that we have analized in the numerical programs in
the Appendix is the epidemic of measles disease. Measles is a highly contagious
infectious viral and exanthematic disease, that strikes children during their school
or preschool years, is at its peak at the end of winter and during spring, and

generally gives immunity to the disease. If adequately treated, measles are benign



and only in rare cases do serious complications occur. Measles have an articulated
evolution that can be divided into 4 phases: incubation, invasion, eruption, and

resolution.
1. Incubation: This phase lasts an average of 9 to 11 days without symptoms.

2. Invasion: This is known as the catarrhal phase with uneasiness, irritability,
high fever, dry and a peevish cough, red eyes, tearing, intolerance to light,
nasal secretion, and sneezing. Right before the exanthema phase, signs of Ko-
plik appear (small white spots on the mucous membrane inside the cheeks).

At the end of the catarrhal phase, the fever disappears for 6-12 hours.

3. Skin eruption or exanthema: it begins after the 14th day of contact. It is
characterized by a rash with round shaped spots, barely protruding, of a
pale pink colour. It always begins on the cheeks, behind the ears and on
the face. The following day the spots invade the neck, the chest and the
upper extremities. The third day the rash spreads to the abdomen and lower
extremities, travelling downward and becoming more apparent. During the
rash, temperature goes up and remains high, up to 39°- 40°, for two or three

days.

4. Resolution phase: The rash disappears after 5-6 days starting from the top
to the bottom of the body, from the head to the feet, travelling as it did
during the appearance, and thinning and flaking of the skin occurs. The
cough can last for a long time and the fever drops when the rash covers the

whole body.

The contagious phase starts during incubation, two or three days before the
catarrhal phase and ends 2-5 days after the rash appears.
The disease is especially contagious when the symptoms are not yet apparent.
To limit the diffusion, isolation of the patient is necessary during the contagious

phase until the 5th day after the appearance of the rash.
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The following figure represents the tendency of measles epidemic in Italy from 1996

to 2007:
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Figura 1: The run on of the number of measles cases in Italy from 1996 to 2007

(source: Minister of Health)

The best model to describe the evolution of an epidemic through a mathe-
matical point of view is the Kermack-McKendrick model (1927), also called SIR
model: SIR model is made up of a system of linear or non-linear ordinary differ-
ential equations, in which an equation describes the evolution of all of the three
classes previously defined and presents, in its interior, the dependence or not, of
the three classes (coupled differential system). Also we assume that the population
struck by the epidemic is homogeneous (individuals are all the same, and their age
difference, sex, and residence do not count), that it is closed, that it is in a specific
city or geographical area without neither immigration nor emigration, and that it
is demographically motionless (there are no births or death). We also assume that
the disease is a type that gives immunity, so a person from the REMOVED group
cannot re-enter the SUSCEPTIBLE group and therefore can’t get re-infected. The



number of individuals that belong to the three classes at time ¢, are respectively

indicated with S(t), I(t), e R(t), and such that they satisfy the following relations
S(t)+I(t)+ R(t) = P(t)

S(0) + I(0) + R(0) = P(0)

The passagge of single individuals from one class to another is governed by the

following two processes :

1. The process of healing the disease, that governs the passage from INFECTED
to the REMOVED;

2. The process of infection that describes the passage from SUSCEPTIBLES
to INFECTED.

The process of healing, described in general terms, is represented from the following

differential equation:

R/ = Rtomor’/‘ow - Rtoday = V(t)I (1)

where v(t) = «y represent the removal rate, or the rate with which the infected leave
their class to enter the removed class, intrinsic to the disease and to its progression
among the infected individuals, having form +(t) = v = }, where ¢ is the duration
of the infection. Such an equation is called equation of velocity where R varies and
describes how to calculate every 24 hours the value of R based on the number of
infected I and type of disease.

The process of infection is characterized by two important parameters: the rate

of contact ”c”

and the degree of infectiousness of the disease ”¢”. These represent
the fraction of people infected with whom on average a susceptible comes into
contact ia period of one day and the infectiousness,that is the probability that a
contact with an infected individual transmits the disease, respectively. Therefore

we get that the quantity of people who infected daily is given by kST, with k := %,



where P is the population. In conclusion we have that the variation of S, from

today to tomorrow is given by
S" = Sgomani — Soggi = —kST (2)
and the variation of “I” in the time is given by
I" = Liomani — Loggi = kST —~I 3)

Reuniting the equations (1), (2), (2), we obtain the SIR model, described by

the following coupled differential equations:

S = Sdomani — Soggi = —kSI
I' = Idomam' - Ioggi = kSI — '7[ (4)
R = Riomani — Roggi =~

and if we add others important factors, we obtain the following SIR model with

vital dynamics:

45 — kST — puS+p
AL = kST — pI — I (5)

%:'yl—uR

with initial values S(0) = Sp > 0, I(0) =1y >0, R(0) = Rp > 0 and suc that
S(0) + I(0) + R(0) = 1, where k, x> 0 and where

e Birth and death rates are equal;

e The population P = S + I + R is constant and sufficiently ample so that
the dimensions of each class can be considered continuous variables instead

of discrete, and in which the newborns are susceptible;

e The individuals are removed from every class with a proportional rate to
the dimension of each group with a constant of proportionality pu, called

mortality rate. The average duration of life is i



e The population is distributed evenly. We express with k the average number
of daily contacts with one individual infected k£S. This way the average daily
number of healthy individuals is k£S. This quantity is considered fixed and
does not vary with the seasons. The type of contact, direct or indirect, to

favour transmission, depends on the specific disease.

e The individuals heal and are removed from the class of infected with a pro-
portional rate to the number of infected with constant of proportionality ~,
called the dayly rate of recovery. The average period of infectiousness is

equal to %

The model, described above, is known as endemic classic model or SIR model with
vital dynamics.

A key problem in shaping the dynamic evolution of an infective disease is the
mathematical representation of the mechanism of transmission as well as the mech-
anism of progression.

The mechanism of transmission has to do with the process of infection for which
an individual exits from the susceptible class and enters the infected one.

The mechanism of progression has to do with the process of recovery for which an
individual exits from the infected class and enters the removed one.

The mechanism of transmission is measured at the rate "\(¢)” with which suscep-
tible individuals become infected; while the mechanism of progression is measured

at the rate ”~(t)” with which infected individuals become removed.

Therefore there are two parameters identified as follows::

1. A(t): represents the probability that in a unit of time a susceptible gets

infected;

2. 7(t): represents the probability that in a unit of time an infected recovers

and becomes removed;



The parameter A(t) is also known as ” force of infection”, and has to do with the
mechanism of infectiousness. The force of infection is characterized by the way in
which individuals come into contact with each other and by the pathogenic agent
produced by the infected population.

Instead the parameter 7(¢) has to do with the progression of the disease, precisely
its development and result for an individual.

In general the force of infection is a function of time and of the quantity of the

infected at time ¢. Therefore it’s represented by the formula:

that acts on each individual in the susceptible class.

Therefore the measure of the force of infection is given by the rate of incidence

that represents the number of new cases at time t.

The " force of infection” Fol, introduced, assumes different forms according
to the current and remote anamnesis of the wide diffusion of the disease that we
will represent with the parameter ”M”, called "in formation index”

The mathematical relation that ties the force of infection Fol to the index of

information M is given by the following formula:
Fol(M) = f(M)I (6)

with S(M) such that 8'(M) < 0.

Introducing the relation (6), the system (5) becomes

S'=—B(M)ST — uS+u

I'=B(M)ST — ul —~I

R =~I —pR (7)
S(0)=Sy>0, I(0)=1Ip>0, R(0)=Ro>0

St)+1(t)+ R(t) =1




where the peak indicates the first derivative compared to time, and

3 is a function of M and such that 3'(M) < 0;

M is the index of information, parameter that reassumes the available infor-

mation on the current and remote anamnesis;

1 is the rate of mortality, referred to the quantity of the removed with fatal

results;

~ is the rate of recovery from the disease, referred to the quantity of removed

with a positive result.

The model I've analyzed from numerical point of view is a SIR model with
vital dynamic with a particular choice of the information index of form M = kI,
with & > 0: namely M is a linear function of the current prevalence of the disease,
represented by, for example the current standardized incidence of serious cases of
the disease. This model is calles model P, where P stands for punctual /local.
Now in order to formulate the mathematical model, it is necessary to define first

of all in mathematical terms the following quantities:

the spatial density of susceptible individuals "s(z,t)";

the spatial density of infected individuals "i(x,t)”

the index of information M (z,t);

the rate of mortality and the rate of recovery, in general spatially non-uniform

wu(x) and v(x) respectively;

The densities s and ¢ are conveniently normalized, so that in absence of disease
the distribution of the susceptible is s(z,t) = 1.

The random motion of the susceptible individuals can be modelled through a classic

. e ) . . 2
equation of the diffusion with coefficient ” DY, expressed in %.

The random motion of the infected individuals can be modelled through a classic
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equation of the diffusion with coefficient "D, expressed in ZT;, with 0 < D; <<

Dyq, since it’s biologically reasonable to hypostasize that the infected individuals
have limitations in their daily activity, namely being infected. Therefore we can

formulate the model P using coupled parabolic differential equations:

91 — DI — () + v(x))i(z, t) + B(M)s(x, 1)i(x, 1) (8)
B(M) = 1+B058M*)

where

e 3(0) = [y is the rate in which it’s possible to obtain a "basic reproductive
number” or a "basic reproductive ratio” of infection, denoted by Ry or
BRN, is the mean number of secondary cases a typical single infected case
will cause in a population with no immunity to the disease in the absence
on intervantions to control the infection. This parameter is defined by the

mathematical relation

_bo
w+v

Ro

e [* is the value of endemic prevalence, a simple value of reference;

e « is the relative rate of decline of the contact rate for an infinitesimal increase

in the infective prevalence.

to which we add the initial conditions

s(x,0) = so(x)
i(z,0) = ip(x)

and Neumann boundary condition

Os

95 _

o (10)
o =0

where % is the outward normal derivative on baundary of domain.
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To discretize the system (8) that represents the model P, we used finite forward
differences for the time and central differences in space. Using this, the system

(8), in one dimension, becomes

sTT = 2EDes? |+ (1 - 285D, — pAt)s? + 25 Dos? | + pAt — Atlww s7i7 )
it = AL Dn 4+ (1- 285D, — At +v))ilt + £5Dii? | + At sni?
while in two dimensions, the system (8) becomes
5?,;21 At Az Dssin + Am2D sSiy1nt
+(1-2 AgD 2405 Dy — plt)sT ,+
+awz DssP_yy + Ay Dsslyg +
+uAt — Atwsj nin, 12)

n+1l

+(1—2AtD 2AtD At(p,+u)) 't
tDZ] 1h+AtDZjh 1t

Bol ey
+Atl*+o¢kz 'h ],h j,h

In the simulation of the model P in one dimension, the steps of discretizzation

Ax and At are given by respectively

L
Axr =
YT M
maxt
At =
N -1

where L=length intervall, M =number of points, maxrt=simulated maximum time
ed N=nembre of temporal iterations.

In this case we take in consideration the following parameters:

DeltaX=0.5; 7% space step
DeltaT=0.01; % time step
L=15; 7% Interval length
maxt=365; % Final time

x=0:DeltaX:L;
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M=length(x); % number of points
t=0:DeltaT:maxt;

N=length(t); 7% number of iterations

Ds=6; % diffusion coefficients
Di=0.01;
nu=1/7; % removal rate from the disease
mi=1/(75%365); % general mortality rate from the disease
beta0=20*(mi+nu); % contact rate
Istar=(0.9%mi)/(mi+nu); % endemic prevalence in the classical SIR model
alpha=0.5; % relative rate of decline of the contact rate
% for an infinitesimal increase in the infective prevalence

k=0.02; % actually reported incidence of serious cases of the disease

and as initial data
so(j)=1 per j=1,... M
0 for j=1,....,14,18,.... M
1 for j=15,16,17

io(j) =

Based on the simulation, based on the programs in the appendix and referring
to the system (11) in one spatial dimension, the following graphics have been elab-
orated, that represent the evolution of the epidemic of measles in the population
referred to during 365 days, taking into consideration the fact that the disease in
an individual lasts an average of 24 days.

Every graphic below represents the state of the disease in the population at

intervals of 10 days starting from the first to the eightieth day.
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0.5f 1
% 5 10 15
X
1
0.5f ]
% 5 10 15
X
Figura 2: Initial data
1
N
0.5f 1
0 ‘ ‘
0 5 10 15
X
1
0.5f 1
% 5 10 15

Figura 3: Maesles after 10 days
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X
1
0.5f 1
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X
Figura 4: Maesles after 20 days
1
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00 5 10 15
X
1
0.5f 1
L
% 5 10 15

Figura 5: Maesles after 30 days
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Figura 6: Maesles after 40 days

Figura 7: Maesles after 50 days
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Figura 8: Maesles after 60 days

Figura 9: Maesles after 70 days
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Figura 10: Maesles after 80 days

In the simulation of the model P in two dimensions, steps of discretization Az,

Ay and At are given by respectively

L
Agp —
YT M1
L1
Ay =
Y= =1
maxt
At =
N -1

where L=shorter side of rectangle, L1=longer side of rectangular, M =number of
points, mart=simulated maximum time and N=number of temporal iterations.

In this other case we take in consideration the following parameters::

DeltaX=0.2; 7 space step
Delta¥=0.6; % space step
DeltaT=0.001; % time step

L=5; J shorter side of the rectangle
L1=15; % longer side of rectangle
maxt=365; % final time
x=0:DeltaX:L;

M=length(x); % number of points on the x-axis
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y=0:DeltaY:L1;

M=length(y); % numebr of points on the y-axis
[X,Y]=meshgrid(x,y);

t=0:DeltaT:maxt;

N=length(t); 7% number of iterations

Ds=6; % diffusion coefficients
Di=0.01;
nu=1/7; Y% removal rate from the disease
mi=1/(75%365); % general mortality rate from the disease
beta0=20*(mi+nu); % contact rate
Istar=(0.9%mi)/(mi+nu); ¥ endemic prevalence in the classical SIR model
alpha=0.5; % relative rate of decline of the contact rate
% for an infinitesimal increase in the infective prevalence

k=0.02; % actually reported incidence of serious cases of the disease

and as initial data

1 for j,h=1,...,14,18,... M
0 for j,h=15,16,17

SU(j7 h) =

0 for jh=1,..,14,18,.... M
1 for j,h=15,16,17

iO(j7 h) =

Based on the simulation, based on the programs in the appendix and referring
to the system (12) in two spatial dimensions, the following graphics have been
elaborated, that represent the evolution of the epidemic of measles in the popula-
tion referred to during 365 days, taking into consideration the fact that the disease
in an individual lasts an average of 24 days.

Every graphic below represents the state of the disease in the total population at

intervals of 10 days starting from the first to the eightieth day.
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Figura 11: Initial data
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Figura 12: Maesles after 10 days
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0.525
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0.505

Figura 13: Maesles after 20 days
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0.15
0.14
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Figura 14: Maesles after 30 days
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0.1672

0.1671
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0.1668

0.1667

0.105

0.1

0.095

0.09

Figura 15: Maesles after 40 days
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Figura 16: Maesles after 50 days
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Figura 17: Maesles after 60 days
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Figura 18: Maesles after 70 days
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Figura 19: Maesles after 80 days

CONCLUSION:

The system of partial differential equations, denominated the model P dis-
cretized through with Euler explicit method, implemented and simulated with
MATLAB language, consented us to show with opposing analytic-numeric calcu-
lus and with the relative graphic representation, that the system mentioned above
is able to furnish models of representation of the progression of epidemics provoked
by infective diseases.

In particular the data relative to measles has been taken as reference for the mathe-
matical implementation in this work and the implementative calculus and graphics
exposed in Chapter 3, for the model P are refered to these data.

In fact the graphics are able to visualize the spreading of the measles epidemic,
in a homogeneous population, spatially structured, closed, and demographically
immobile, that causes a progressive diminution of the classes of susceptible until
it reaches levels that tend towards zero and a corresponding increase of the classes
of infected.

Even though the work done here on the model ”P” is affected by all the simplifi-
cations derived from the assumed limited hypothesis, we were able to show that

this establishes a work base for the management of epidemics.
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Further developing the model and adding constant and appropriate boudary con-
ditions, costantly updated, you can reach an even more complete system, that
provides indications based on scientific presumptions for the government know-
ingly and non-random phenomena epidemic, always more possible in a globalized

world and characterized by continuous intercontinental exchanges.
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