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Riassunto

L’argomento principale della tesi è la descrizione di una procedura per
costruire un comonoide commutativo libero in una categoria simmetrica
monoidale.

La prima parte consiste in una rapida introduzione alla teoria delle cate-
gorie, che intende fornire gli strumenti necessari per comprendere il resto. La
seconda parte riporta le regole della logica lineare (classica e intuizionista) e
una descrizione delle proprietà delle categorie che la interpretano.

La terza parte descrive nei particolari la procedura, che consiste nell’iden-
tificare gli oggetti della categoria simmetrica monoidale con dei funtori di
una seconda categoria simmetrica monoidale opportunamente costruita, e
poi calcolare il comonoide commutativo libero generato da un oggetto in
termini di estensioni di Kan. Queste estensioni di Kan, in seguito, assumono
un significato pratico perché possono essere identificate con oggetti puntati
e limiti sequenziali, che è possibile costruire nella maggior parte dei modelli
categorici della logica lineare.

Infine, l’ultima parte presenta due esempi della costruzione, il primo nella
categoria delle relazioni e il secondo in quella degli spazi coerenti.
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Résumé

Le sujet principal du mémoire est la description d’une procédure pour
construire un comonöıde commutatif libre dans une catégorie symétrique
monöıdale.

La première partie est une introduction rapide à la théorie des catégories,
qui est pensée pour donner les instruments nécessaires à la compréhension du
reste. La deuxième partie expose les règles de la logique linéaire (classique et
intuitionniste) et contient une description des propriétés des catégories qui
l’interprètent.

La troisième partie décrit dans les détails la procédure, qui consiste à
identifier les objets de la catégorie symétrique monöıdale avec des foncteurs
d’une deuxième catégorie symétrique monöıdale construite à ce but, et en-
suite évaluer le comonöıde commutatif libre engendré par un objet en termes
des extensions de Kan. Ces extensions de Kan, par la suite, prennent un
sens concret car on peut les identifier avec des objets pointés et des limites
séquentielles, qu’il est possible de construire dans la plupart des modèles
catégoriques de la logique linéaire.

Enfin, la dernière partie présente deux exemples de la construction, le
premier dans la catégorie des relations et le deuxième dans celle des espaces
de cohérence.
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Summary

For centuries, mathematicians studied abstract objects and formal theo-
ries, using as tool and as vehicle of their reasoning a highly technical jargon,
which is called proof.

Intuitively, a proof can be considered as a rational argument, intended
to convince logical beings of the validity of an assertion. And in practice, in
mathematics it was the only acceptation of the word for a long time. Even
if proofs underlay (and still underlie!) mathematical reasonings, questions
about their nature, their features and their intrinsic meaning did not occur
until nineteenth century.

One of the first mathematician to consider proofs per se as a subject
of inquiry was Gottlob Frege [1] in 1879, who introduced a mathematical
notation which enables to translate vernacular proofs, which are the usual
informal proofs, in formal proofs, which can be studied in the same way as
other mathematical objects.

Nevertheless, the birth of that mathematical branch which is now called
proof theory is located in the work of David Hilbert, who took an interest
in Frege’s work and put a proof-theoretic problem (that is, showing that
arithmetic is consistent) in his list of twenty-three open problems exposed at
the International Congress of Mathematicians in Paris, in 1900.

Since then, a lot of progress has been made in this field and a deep
insight on the matter has been got. One of the most important achievement
is provided by the work of Gerhard Gentzen [2], whose sequent calculus
provided an elegant and powerful manner of formalizing proofs.

In particular, in proof theory a distinction has been made between a proof
and the validity of its conclusion (which refers to the notion of model) and
this led to consider logics which are different from the classical one. Indeed,
when proofs are studied as objects which can be produced through a symbolic
device (for instance, the sequent calculus), it becomes perfectly legitimate to
alter the symbolic device in order to produce different results.

What is most interesting is that, sometimes, changing some aspects of the
system is possible to obtain an environment with more desirable properties
than the properties possessed by the classical one. This is, for instance, the
case of linear logic.

Linear logic was introduced by Jean-Yves Girard in 1987 [8].
In sequent calculus, proofs are obtained by applying a finite number of

rules, which enables to transform formulas in a formalized way [2, 9]. Rules
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can be classified in different groups, one of which is formed by structural
rules.

While working on coherence spaces, Girard devised the possibility of a
new type of implication, the linear implication (, which showed to enjoy
good properties [9]. But including the linear implication required a series of
changes, in particular in relation to structural rules.

Limiting the use of some of them (weakening and contraction), as it hap-
pens in linear logic, enables to obtain a formal system which preserves the
constructive interpretation of intuitionistic logic, without losing the symme-
try of classical logic.

Yet, in order to recover the full expressive power of classical reasoning,
it is necessary to introduce two dual modalities, ! (pronounced “of course”)
and ? (pronounced “why not”), which constitute the exponential fragment
of linear logic and which define a special type of formulas over which it is
possible to apply weakening and contraction [9, 10].

The special attention paid to structural rules is also suggested by the
remark that Gentzen’s sequent calculus provides intuitionistic logic simply
restricting admissible sequents to sequents with only one formula on the right
side. This can also be interpreted thinking that the use of weakening and
contraction rules is only admissed on the left side of a sequent.

This apparently harmless limitation provides a logic with desirable con-
structive features, but, as it is plain, suffering from a conspicuous asymmetry.
Linear logic was developed in order to compensate for this flaw.

One of the most important features of Gentzen’s sequent calculus, which
still holds in linear logic and preserves its original importance, is the cut-
elimination theorem, that is the possibility of transforming any proof into a
proof which does not use a specific rule: the cut. This ensures a series of nice
and useful properties, which are highly desirable for a logic to have [11].

The cut-elimination theorem is constructive, that means that it provides
a mechanical procedure that transforms a generic proof in a cut-free proof
(which is sometimes called in normal form). In order to better understand
this procedure, denotational semantics studies mathematical invariants of
proofs under cut-elimination, that is to say functions which associate with
every proof π a mathematical object [π], such that if π′ is obtained from π
by cut-elimination, then [π] = [π′].

The design of linear logic and of its cut-elimination procedure entails that
such invariants have a categorical structure [15]. Robert Seely showed in 1989
that the multiplicative fragment of linear logic is naturally interpreted in a
∗-autonomous category, while the category requires finite products to inter-
pret the additive fragment [18]. On the other hand, Yves Lafont pointed out
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that the exponential fragment can be interpreted by categories that have a
free commutative comonoid !A for every object A [14].

The aim of this thesis is describing a procedure to construct the free com-
mutative comonoid !A in a generic symmetric monoidal category C, provided
some additional hypothesis are satisfied. The original work is due to Melliès,
Tabareau and Tasson [17].

This procedure is a generalization of the obvious procedure that consists
in defining !A as the infinite cartesian product:

¯

n∈N
An (1)

where An is the equaliser of

A⊗n A⊗n
symmetry

symmetry

...

Indeed, this formula works when the infinite product commutes with the
tensor product, as it happens in the relational model (but not in the category
of coherence spaces, for instance).

To obtain a higher level of applicability (that is unfortunately far from
being general [17]), it is necessary to introduce more refined tools.

Symmetric monoidal categories, free commutative comonoids, free
pointed objects

The notion of monoidal category provides a theoretical background to con-
sider monoid objects in categories, generalizing the well-known algebraic con-
cept.

The formal definition is the following:

Definition 1 (Symmetric monoidal category). A monoidal category is a
category C equipped with a bifunctor ⊗ : C × C → C and with natural
isomorphisms αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), λA : I ⊗ A → A and
%A : A⊗ I → A for every A,B,C ∈ C (where I is a fixed object of C called



7

unit), such that

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

α⊗D α

α α

A⊗ α

(2)

and

(A⊗ I)⊗B

A⊗B A⊗ (I ⊗B)

%⊗B α

A⊗ λ

(3)

commute for every A,B,C,D ∈ C.

A symmetric monoidal category is a monoidal category C equipped with
a symmetry, that is a natural isomoprhism γA,B : A⊗B → B ⊗A, for every
pair of objects A,B, such that γB,A = γ−1A,B and the following diagram

A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(A⊗B)⊗ C B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

α

γ ⊗ C

γ

α

α
B ⊗ γ

(4)
commutes for every A,B,C ∈ C. �

A comonoid is simply a monoid in the dual category Cop:

Definition 2 (Free commutative comonoid). A comonoid (C, d, u) in a sym-
metric monoidal category (C,⊗, I) is given by an object C and morphisms
d : C → C ⊗ C and u : C → I (called multiplication and unit of the
comonoid), such that the diagrams
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C

C ⊗ C C ⊗ C

C ⊗ C ⊗ C

d d

C ⊗ d d⊗ C

C

C ⊗ C C ⊗ C

C

d d

C ⊗ u u⊗ C

id

commute (they are called associativity and unitality properties of a comonoid).
The comonoid is commutative if and only if

C C ⊗ C

C ⊗ C

d

γC,C
d

commutes.
A comonoid is freely generated by an object A if there exists a morphism

ε : C → A and for every morphism f : D → A, where D is a commutative
comonoid, there exists a unique comonoid morphism f̃ : D → C such that

C

D

A

ε

f̃

f

(5)

commutes. �

Theorem 1. The category Cco denotes the subcategory of C which has comonoids
as objects and comonoid morphisms as morphisms. It is a symmetric monoidal
category, with symmetric monoidal structure inherited from the symmetric
monoidal structure of C.

The notion of pointed object is closely related to that of comonoid: a
pointed object could be thought of as a comonoid without multiplication.

Definition 3 (Free pointed object). A pointed object in a monoidal category
(C,⊗, I) is a pair (B, u), where B is an object of C and u : B → I is a
morphism.
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Given an object A ∈ C, (B, u) is the free pointed object generated by A if
and only if there exists a morphism εA : B → A and for every other pointed
object (C, v) such that there exists a morphism g : C → A, there exists a
unique pointed morphism h : C → B such that the following diagram

C B

A

g εA

h

(6)

commutes. �

Theorem 2. The category C• denotes the subcategory of C which has pointed
objects as objects and pointed morphisms as morphisms. It is a symmetric
monoidal category, with symmetric monoidal structure inherited from the
symmetric monoidal structure of C.

Commutative comonoids and exponential modality

The idea which usually underlies a denotation is that a formula A should be
associated with an “object” [A] and a proof π of the sequent Γ ` ∆ with a
“morphism” [π] : [Γ]→ [∆].

Yves Lafont showed that to interpret the exponential modality it is enough
considering symmetric monoidal closed categories (or ∗-autonomous cate-
gories) where for every object [A] there exists the free commutative comonoid
![A] generated by [A]. Obviously, if this holds the interpretation of formula
!A will be ![A].

Indeed, given a proof π of the sequent Γ, !A, !A,∆ ` B and an interpre-
tation [π] of this proof, the application of a contraction rule, that is, the
following proof

π
...

Γ, !A, !A,∆ ` B
Contraction

Γ, !A,∆ ` B
is interpreted by pre-composing [π] with d, where d is the multiplication of
the comonoid:

[Γ]⊗ ! [A]⊗ [∆] [Γ]⊗ ! [A]⊗ ! [A]⊗ [∆] [B]
id[Γ] ⊗ d⊗ id[∆] [π]

Similarly, the application of a weakening rule to the proof π of the sequent
Γ, !A,∆ ` B, that is
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π
...

Γ,∆ ` B
Weakening

Γ, !A,∆ ` B

is interpreted by pre-composing with the unit u:

[Γ]⊗ ! [A]⊗ [∆] [Γ]⊗ [∆] [B]
id[Γ] ⊗ u⊗ id[∆] [π]

Concerning the promotion rule, given a proof π of the sequent !Γ ` A,
the following proof

π
...

!Γ ` A
Promotion

!Γ ` !A

is interpreted by the unique comonoid morphism

! [Γ] ! [A]
[̃π]

which exists because there is a morphism [π] from the commutative comonoid
![Γ] to [A].

Finally, given a proof π of the sequent Γ, A,∆ ` B, the following proof

π
...

Γ, A,∆ ` B
Dereliction

Γ, !A,∆ ` B

is interpreted by pre-composing with the morphism ε : ![A]→ [A]

[Γ]⊗ ! [A]⊗ [∆] [Γ]⊗ [A]⊗ [∆] [B]
id[Γ] ⊗ ε⊗ id[∆] [π]

Construction of the free commutative comonoid

Basically, the construction starts with a preliminary stage, the evaluation of a
free pointed object (which, as it has been said, can be thought as a comonoid
without multiplication), and then enables to identify the free commutative
comonoid with a sequential limit, evaluated on a family of equalisers.

This approach provides a unit for the comonoid in the first place, then it
“extends” the result to a proper comonoid: this can be seen as a construction
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“little by little”. It is not misleading thinking that it succeeds where the
brute construction as infinite product does not thanks to the “little by little”
strategy.

However, this should not make lose sight of the theoretical depth of the
result, since the justification of the “practical” steps of the construction in-
volves refined notions of category theory. Therefore, it is more correct saying
that what makes the approach work is the powerful tool of Kan extensions,
which can be used because there is the possibility of “translating” objects of
the category into functors of another and vice versa.

The triplet (C,⊗, I) denotes hereinafter a symmetric monoidal category.

Definition 4 (Symmetric monoidal theory). A symmetric monoidal theory
T (or PROP) is defined as a symmetric monoidal category whose objects are
natural numbers and whose tensor product is the ordinary sum. �

Definition 5 (Model of T). A model of a symmetric monoidal theory T in
C is a symmetric (strong) monoidal functor F : T→ C. �

Definition 6 (Mod(T,C)). Mod(T,C) is the category which has models of
T as objects and monoidal natural transformations as morphisms. �

It is possible to find an equivalence between C, C• and Cco and three
categories of models:

Theorem 3. Consider the symmetric monoidal theory B, which has bijec-
tions as morphisms between finite ordinals [n] = 0, 1, . . . , n− 1. C is equiv-
alent to Mod(B,C).

Theorem 4. The symmetric monoidal theory I has injections as morphisms
between finite ordinals [n] = [0, . . . , n− 1]. Mod(Iop,C) is equivalent to C•.

Theorem 5. The symmetric monoidal theory F has functions as morphisms
between finite ordinals [n] = [0, . . . , n− 1]. Mod(Fop,C) is equivalent to Cco.

Using the previous categories equivalences, it is possible to see objects as
functors and this enables to consider Kan extensions of them:

Definition 7 (Kan extensions). Given a 2-category C, 0-cells X, Y, Z and
1-cells F : X → Z and G : X → Y , a right Kan extension of F along G
in C (if it exists) consists of a pair (F̃ , η) where F̃ : Y → Z is a 1-cell and

η : G; F̃ ⇒ F is a 2-cell. Moreover, for every other pair (H : Y → Z, µ :
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G;H ⇒ F ), it is required the existence of a unique 2-cell δ : H ⇒ F̃ such
that the following diagram commutes:

G; F̃

F G;H

η δ � 1G

µ

(7)

�

Normally, Kan extensions are calculated in the 2-category Cat, which
has categories as 0-cells, functors as 1-cells and natural transformations as
2-cells.

Nevertheless, in this case it is necessary to consider Kan extensions in the
2-category SymMonCat, which has symmetric monoidal categories as 0-cells,
symmetric monoidal functors as 1-cells and monoidal natural transformations
as 2-cells.

Remark 1. The forgetful functor from Cco to C corresponds to the functor U :
Mod(Fop,C)→Mod(B,C) which sends every model M to i;M : B→ C and
every model morphism θ : M → N to i; θ : i;M → i;N (where i : B → Fop
is the inclusion functor defined as the identity on objects and morphisms).

Notice that i is obviously a symmetric monoidal functor.

Given an object A in C, call simply A : B → C the model associated
with it by the categories equivalence defined previously. So A is a symmetric
monoidal functor.

The following lemma is the core issue of the construction:

Lemma 1. For every A ∈ C, the right Kan extension (RaniA : Fop → C, η :
i;RaniA→ A) of A along i in the 2-category SymMonCat induces the free
commutative comonoid !A, which corresponds to (RaniA)([1]).

Proof. RaniA is a symmetric monoidal functor from Fop to C, so it is an
object of Mod(Fop,C), which is equivalent to the category of commutative
comonoids Cco. Therefore (RaniA)([1]) is a commutative comonoid. To
show that it is freely generated by A, it is necessary to find a morphism
ε : (RaniA)([1]) → A which satisfies the universal property expressed by
diagram (5).

Notice that the monoidal natural transformation η is a morphism in
Mod(B,C) from U(RaniA) to A (where U is the forgetful functor). There-
fore η([1]) is a morphism in C from (RaniA)([1]) to A([1]) = A and it is
possible to define ε ≡ η([1]).
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Now suppose there is a commutative comonoid C and a morphism f :
C → A. This is equivalent to having a model C ∈ Mod(Fop,C) and a
monoidal natural transformation (f : i;C → A) ∈ Mod(B,C). Hence, by
definition of Kan extension, there is a unique monoidal natural transforma-
tion δ : C ⇒ RaniA such that the diagram (7) commutes. Since δ([1]) is
a comonoid morphism in Cco (thanks to the categories equivalence), it is

possible to define f̃ ≡ δ([1]).

To conclude, notice that the diagram (5) is a special case of the diagram
(7) (it corresponds to that diagram evaluated in [1]), so it commutes. The

uniqueness of f̃ follows from that of δ.

Unfortunately, RaniA is not computable in most cases.

The solution is to split i in two functors, j : B → Iop and k : Iop → Fop,
such that i = j; k (notice that i and j are still defined as the identity
on objects and morphisms). Then, it is possible to compute RaniA as
Rank(RanjA).

Concerning the first Kan extension that is necessary to compute, it turns
out that RanjA is equivalent to finding a free pointed object (A•, u) for every
object A ∈ C.

Considering the other Kan extension, it is folklore that RankA• is com-
puted in the 2-category Cat as the end formula∫

[n]∈Iop
(A•)([n], [n]) (8)

where A• is the functor from I× Iop to C defined as follows:

• A•([n], [m]) ≡ F•(A•)([m]).

• Consider a morphism f : [n]→ [n′] in I and a morphism g : [m]→ [m′]
in Iop;

A•(f, g) ≡ F•(A•)(g).

Call (A≤n, en) the equaliser of the n! symmetries:

A⊗n• A⊗n•

symmetry

symmetry

...

Notice that in this case the fact that (A≤n, en) is the equaliser ensures that
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the following diagram

A≤n A⊗n•

A⊗n•

en

en s

commutes for every symmetry s (because idA⊗n
•

is a symmetry).

Lemma 2. There exists a canonical morphism A≤n+1 −→ A≤n.

Proof. Notice that

A≤n+1 A⊗n+1
• A⊗n• ⊗ I A⊗n•

en+1 A⊗n
• ⊗ u %

is a morphism from A≤n+1 and A⊗n• (call it dn+1). If dn+1; sn = dn+1 for every
symmetry sn : A⊗n• → A⊗n• , it is possible to find a morphism from A≤n+1

to A≤n using the properties of the equaliser (and the morphism is canonical

because it is the unique morphism d̃n+1 such that dn+1 = d̃n+1; en).
Consider the following diagram

A≤n+1 A⊗n+1
• A⊗n+1

• A⊗n• ⊗ I

A⊗n• ⊗ I A⊗n• A⊗n•

en+1 s̃n A⊗n
• ⊗ u

%A⊗n
• ⊗ u

% sn

where sn represents a symmetry of A⊗n• and s̃n is defined as sn⊗A• and is a
symmetry of A⊗n+1

• . The lower path corresponds to dn+1; sn, while the upper
one is equal to dn+1 thanks to the properties of en+1. The commutativity of
this diagram ensures the result. Concerning this, notice that sn ⊗ A;A⊗n• ⊗
u; % = sn ⊗ u; % (because ⊗ is a bifunctor), which is equal to A⊗n• ⊗ u; %; sn
if and only if %; sn = sn ⊗ idI ; %, that is if and only if the following diagram
commutes:

A⊗n• ⊗ I A⊗n•

A⊗n• ⊗ I A⊗n•

%

snsn ⊗ I

%

And this is true by naturality of %.
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Therefore, it is possible to define an object A∞ as the sequential limit of

I A≤1 A≤2 . . . A≤n A≤n+1 . . .

(9)
whent it exists, with limiting cone given by projection maps pn.

Lemma 3. If the equalisers (A≤n, en) exist and if the sequential limit (9)
exists, then the end formula (8) exists and corresponds to the sequential limit.

Proof. It is enough to show that (A∞, ω) is an end of the functor A•, where
ω[n] ≡ pn; en. In order to do this, it is necessary to show that ω makes this
diagram

A∞ A⊗n•

A∞ A⊗n
′

•

A∞ A⊗n
′

•

pn; en

id

id

A•([n], f)

pn′ ; en′

id

commute for every f : [n]→ [n′] in Iop (notice that it ensures n′ ≤ n). That
happens if and only if

A∞

A⊗n• A⊗n
′

•

pn; en

A•([n], f)

pn′ ; en′

commutes for every n′ ≤ n. Suppose n = n′ + 1. The commutativity of the
last diagram is equivalent to that of

A∞

A≤n
′+1 A≤n

′

A⊗n
′+1

• A⊗n
′

•

pn′+1

d̃n′+1

pn′

en′+1 en′

A•([n′ + 1], f)
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Now, the triangle commutes thanks to the properties of limit and the square
commutes because

en′+1;A•([n
′ + 1], f) = en′+1; sn′+1; idA⊗n′

•
⊗ u; %

A⊗n′
•

=

= en′+1; idA⊗n′
•
⊗ u; %

A⊗n′
•

= dn′+1 = d̃n′+1; en′

Given another dinatural transformation β from an object x toA•, consider
the following diagram:

A∞

I A≤1 . . . A≤n A≤n+1 . . .

I A⊗1• . . . A⊗n• A⊗n+1
• . . .

x

p0 p1 pn pn+1

d̃1 d̃2 d̃n d̃n+1 d̃n+2

idI e1 en en+1

u id⊗ u; % id⊗ u; % id⊗ u; % id⊗ u; %

β[0] β[1] β[n] β[n+1]

(10)
Notice that for every n and for every symmetry sn, it holds that β[n]; sn = β[n]
thanks to the properties of dinatural transformation. So for every n there
exists a unique morphism hn : x → A≤n such that β[n] = hn; en (thanks to
the definition of equaliser).

Now for every n,

hn; en = β[n] = β[n+1]; id⊗ u; % = hn+1; en+1; id⊗ u; % = hn+1; d̃n+1; en

that is to say hn = hn+1; d̃n+1 (because en is a monomorphism). This means
that by definition of limit, there exists a unique morphism h such that h; pn =
hn. This ensures that h; pn; en = hn; en = β[n] (see above), that is h;ω[n] = β[n]
for every n and this concludes the proof.

To sum up, it is possible to evaluate the right Kan extension of A• along
k using the sequential limit (9). Nevertheless, the implied claim that the end
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formula (8) provides the right Kan extension in the 2-category SymMonCat
(and not simply in Cat) remains to be proved.

To solve this, it is possible to apply a result proven in [16], which states
that the Kan extension in SymMonCat coincides with that in Cat, provided
that the canonical morphism

X ⊗
∫
[n]∈Iop

A⊗n• −→
∫
[n]∈Iop

(X ⊗ A⊗n• ) (11)

is an isomorphism for every X ∈ C.

Lemma 4. If the tensor product commutes with the equalisers and with the
sequential limit, then the morphism (11) is an isomorphism for every X ∈ C.

Remark 2. Commutativity between tensor product and equalisers means that
for every X ∈ C, (X ⊗ A≤n, idX ⊗ en) corresponds to the equaliser of

X ⊗ A⊗n• X ⊗ A⊗n•
X ⊗ symmetry

X ⊗ symmetry
...

Similarly, commutativity between tensor product and sequential limit means
that for every X ∈ C, (X ⊗ A∞, {idX ⊗ pn}n) corresponds to the sequential
limit of

X ⊗ I X ⊗ A≤1 . . . X ⊗ A≤n . . .
X ⊗ d̃1 X ⊗ d̃2 X ⊗ d̃n X ⊗ d̃n+1 (12)

The result obtained is summarized in the following theorem:

Theorem 6. Consider a symmetric monoidal category C. If every object
A ∈ C generates a free pointed object A• and if the equalisers (A≤n, en)
(for every n) and the sequential limit (9) exist, then this sequential limit
corresponds to the free commutative comonoid generated by A, provided that
the tensor product commutes with the equalisers and with the sequential limit.
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