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Synthesis

Bayesian Analysis

Classical statistics uses only informations deriving from the likelihood. If

X1, . . . , Xn are independent random variables arise from the density p(x, θ)

with θ ∈ Θ a parameter, the likelihood function is defined as

L(θ) =
n

∏

i=1

p(xi, θ). (1)

One important estimator for θ used in this case is the maximum likelihood

estimation that is defined as

θ̂ ∈ Θ such that L(θ̂) = sup
θ∈Θ

L(θ). (2)

Recently, the Bayesian method has had a big developing. The Monte

Carlo Markov Chain methods allow us to generate a Markov chain that

converges to the target distribution of interest. We use a Gibbs Sampling

algorithm, which is a special case of MCMC algorithm. A simple case is the

following. Let θ = (θ1, θ2) ∈ Θ ⊂ R
2. We indicate the target distribution as

π(θ1, θ2). If we cannot sample from π but the following distributions (called

full conditionals)

π1(θ1|θ2) π2(θ2|θ1)

are known, we can sample from these ones: we start with a value θ0 =

(θ
(0)
1 , θ

(0)
2 ) and we generate T values of θ: θ

(1)
1 ∼ π1(θ1|θ(0)

2 ), θ
(1)
2 ∼ π2(θ2|θ(1)

1 ),
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then θ
(2)
1 ∼ π1(θ1|θ(1)

2 ) and so on. The sequence of these values converges to

a sample from the target distribution π as T goes to ∞.

The Bayesian analysis is based, as well as on likelihood, on prior proba-

bility that are assigned to the parameter we want to estimate. Thus, the

information is summarized by the posterior distribution of the parameter,

and this is obtained through the Bayes theorem.

Theorem 1. Let A be an event such that A ⊂ [B1 ∪ · · · ∪ Bn], where

B1, . . . , Bn are pairwise disjointed. Then for each i it follows that

Pr(Bi|A) =
Pr(A|Bi) Pr(Bi)

∑n
j=1 Pr(A|Bj) Pr(Bj)

. (3)

We consider θ as a random variable with density π(θ) that is the prior

density. This distribution depends on the informations we have and so it is

subjective. If we denote with x the vector (x1, . . . , xn) the expression of the

Bayes theorem for the densities is, under some conditions on the existence of

the denominator and on the existence of Radon-Nikodim derivatives,

π(θ|x) =
π(θ)L(θ, x)

∫

Θ
π(θ)L(θ, x) dθ

. (4)

The denominator of (4) is a normalisation constant and it is the marginal

distribution of the random vector x. Thus, π(θ|x) is the posterior distribution

for θ and to detect it we can only consider the result of the prior distribution

for the likelihood.

In the nonparametric case, the “parameter” we want to estimate is a

function, generally a distribution or a density function, thus the problem has

a higher complexity and the MCMC (Monte Carlo Markov chain) algorithms

are useful. We work on a binary regression problem.

We have a binary response variable Y and a corresponding covariate value

X belonging to a covariate space X . Our purpose is to estimate the response

probability function p(x) = Pr(Y = 1|X = x). We consider a regression

function that is p(x) = H(η(x)). In order to provide flexibility to the model,

we do not choose an explicit form for η. Rather, we assume that η(x) follows

a Gaussian Process. Note that H plays the role of mapping R → (0, 1).
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Gaussian Process

We describe some basics of random fields. We start with the definition of a

general random field that is:

Definition 2. Let (Ω,F , P) be a probability space and T be a parameter

set. A random field is a finite or real valued function X(t, ω) which, ∀ t ∈ T

fixed, is a measurable function of ω ∈ Ω, that is a random variable.

For a fixed ω ∈ Ω, the function X(t, ω) is a non-random function of t.

This function is called a sample path or a realization of the random field and

it is indicated with xt. The parameter t is said the position. A random field

can be described by its finite-dimensional distributions:

Ft1,...,tk(x1, . . . , xk) = P(Xt1 6 x1, . . . , Xtk 6 xk)

that are right-continuous and nondecreasing and

Ft1,...,tk(x1, . . . ,−∞, . . . , xk) = 0, Ft1,...,tk(+∞, . . . , +∞) = 1.

The Kolmogorov’s Existence Theorem establishes the existence of a ran-

dom field.

Theorem 3. If a system of finite-dimensional distributions, Ft1,...,tk , satisfies

the symmetry and the compatibility conditions, then there exists on some

probability space (Ω,F , P) a random field {Xt, t ∈ T} having Ft1,...,tk as its

finite-dimensional distributions.

The symmetry condition is defined as following. If π is a permutation of

the index set {1, . . . , k}, then

Ft1,...,tk(x1, . . . , xk) = Ftπ1,...,tπk
(xπ1, . . . , xπk),

provided that the events (Xt1 6 x1, . . . , Xtk 6 xk) and (Xtπ1
6 xπ1, . . . , Xtπk

6

xπk) are identical.

The compatibility condition requires that

Ft1,...,tk−1
(x1, . . . , xk−1) = Ft1,...,tk−1,tk(x1, . . . , xk−1, +∞).

Now, we introduce Gaussian processes with the definition
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Definition 4. A Gaussian random field is a random field where all the finite-

dimensional distributions Ft1,...,tk are multivariate normal distributions ∀ k

and t1, . . . , tk ∈ R.

A Gaussian process can be specified by giving its mean and covariance

kernel functions and the finite-dimensional distributions are multivariate nor-

mal distributions. The multinormal probability densities are of the form

pt1,...,tk(x1, . . . , xk) =
1

(2π)k/2|Σ|1/2
exp

{

− 1

2
(x − m)tΣ−1(x − m)

}

,

Both symmetry and compatibility conditions hold for a Gaussian process,

thus for Theorem (3) there exists a Gaussian random field with probability

densities well defined and the covariance matrix positive definite.

We now give the definitions of continuity with probability one, almost

surely and mean square continuity.

Definition 5. A random field X has continuous sample paths with proba-

bility one if

P(ω : |X(tn, ω) − X(t, ω)| →n 0, ∀ t ∈ T ) = 1

∀ tn such that tn →n t.

A random field X is almost surely continuous if

P(ω : |X(tn, ω) − X(t, ω)| →n 0) = 1

∀ tn such that tn →n t and ∀ t ∈ T .

A random field X is mean square continuous if

E(|X(tn) − X(t)|2) →n 0

∀ tn such that tn →n t and ∀ t ∈ T .

A theorem holds for mean square continuity of a process and a relation for

continuous sample paths with probability one that, for a Gaussian process,

can be stated as follows.
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Theorem 6. Let X(t) be a Gaussian process with mean function m(t) = 0.

Let covariance function C(t, s) be continuous. If

E(|X(t) − X(s)|2) 6
c

| log τ |1+ǫ
,

for c > 0, ǫ > 0 and ∀ τ < 1, then X(t) has continuous sample paths with

probability one.

Mean square differentiability is a necessary condition to have differen-

tiable sample paths and if the covariance function C(t, s) is such that
∂2C(t, s)

∂ti∂si

exists and is finite ∀ i = 1, . . . , n at (t, t), then X(t) is mean square differen-

tiable at t.

Now, we introduce the notion of Reproducing Kernel Hilbert space. We

indicate with S the space of function f(t) with t ∈ I.

Definition 7. Let S be a space with a inner product. If S is a Banach space

under the norm induced by the inner product, then S is a Hilbert space.

We proceed with the definition of a reproducing kernel Hilbert space:

Definition 8. A Hilbert space S of functions on I is called a reproducing

kernel Hilbert space if there exists a doubly indexed function R(t, s) on I ⊗ I

which satisfies the following conditions:

(i) R(t, ·) ∈ S ∀ t ∈ I,

(ii) 〈f,R(t, ·)〉S = f(t) ∀ f ∈ S, t ∈ I.

The function R is called the reproducing kernel of S.

In the case of a Gaussian process with mean function m(t) and covariance

kernel C(t, s), if we assume that the covariance function is of the form

C(t, s) = τ−1C0(λt, λs),

with C0 a nonsingular covariance kernel, τ > 0 and λ > 0 and if we define

the set A as

A =

{

X(t) =
k

∑

i=1

aiC0(λt, λsi), a1, . . . , ak ∈ R, s1, . . . , sk ∈ I, k > 1

}

,
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then Ā, the closure of A in the supremum metric, is called the reproducing

kernel Hilbert space (RKHS) of C0.

Mercer’s theorem (see [11]) allows us to rewrite a Gaussian process as sum

of eigenfunctions of the covariance kernel, if this is positive definite, because

the series

C(t, s) =
+∞
∑

i=1

λiφi(t)φi(s),

absolutely converges for each (t, s) and uniformly on each compact subset of

the closed index set.

Nonparametric Bayesian analysis

In the nonparametric analysis the parameter of interest is infinite dimensional

and so what we estimate is the entire function distribution which the data

come from. For example, a possible prior on the space of probability measures

on a measurable space is the Dirichlet process.

Definition 9. Let A be a positive constant and let G be a probability mea-

sure on the space (X ,B). A Dirichlet process on (X ,B) wih parameters

(A,G) is a random probability measure P , which assigns the value P (B)

to all B ∈ B, such that P (B) is a measurable random variable, each its

realization is a probability measure on (X ,B) and for {B1, . . . , Bk} the joint

distribution of (P (B1), . . . , P (Bk)) has Dirichlet distribution with parameters

(k,AG(B1), . . . , AG(Bk)).

Rather, if we are interested to a survival distribution function, we may use

an independent increment process as prior. In our case, we try to estimate

the response probability function p(x) and so we use a Gaussian process

that is a prior used, for example, in density estimation or regression function

estimation problems.

A condition that must be verified is the consistence. We have a sequence

of statistical experiments {X (n), B(n), P
(n)
θ : θ ∈ Θ} and X(n) is the obser-

vation of the n-th experiment, Θ is a topological space. Let B be the Borel
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sigma-field on Θ and Πn be a probability measure on (Θ,B) and it may de-

pend on n. The posterior distribution is denoted by Πn(·, X(n)) and is said to

be a version of the conditional probability of θ given X(n). The consistence

is defined as:

Definition 10. Let θ0 ∈ Θ. The posterior distribution Πn(·, X(n)) is con-

sistent at θ0, with respect to the given topology on Θ if Πn(·, X(n)) converges

weakly to δθ0
as n → +∞ under P

(n)
θ0

-probability, or a.s. under the distribu-

tion induced by θ0.

Doob obtained a result on posterior consistency with the prior Π fixed and

i.i.d. observations. Under measurable conditions on the sample space and

model identifiability, he showed that the set of θ ∈ Θ where consistency does

not hold is a Π-null set. This follows by the convergence of the martingale

E(1(θ ∈ B|X1, . . . , Xn)) to E(1(θ ∈ B|X1, X2, . . . )) = 1(θ ∈ B).

A general result on consistency has been obtained by Schwartz. To in-

troduce it, we must define the Kullback-Leibler divergence.

Definition 11. The Kullback-Leibler divergence, denoted as K(θ1, θ2), is

defined as
∫

X

p(x, θ1) log
p(x, θ1)

p(x, θ2)
dµ(x). (5)

We say that θ0 ∈ Θ is in the Kullback-Leibler support of Π, and we write

θ0 ∈ KL(Π), if ∀ ǫ > 0, Π(θ : K(θ0, θ) < ǫ) > 0.

Schwartz’s theorem is:

Theorem 12. Let θ0 ∈ U ⊂ Θ. If there exists m > 1, a test function

φ(X1, . . . , Xm) for testing H0 : θ = θ0 against H1 : θ ∈ U c with the property

that inf(Eθ(φ(X1, . . . , Xm)), θ ∈ U c) > Eθ0
(φ(X1, . . . , Xm)) and θ0 ∈ KL(Π),

then Π(θ ∈ U c|X1, . . . , Xn) → 0 a.s. Pθ0
.

For the first condition, it is necessary the existence of an unbiased test for

testing the null hypothesis against the alternative one, and this sequence of

tests φn(X1, . . . , Xn) is such that the probability of the type I error Eθ0
(φn(X1,

. . . , Xn)) and the probability of type II error sup
θ∈Uc

Eθ(1−φn(X1, . . . , Xn)) con-

verge to zero exponentially fast.
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Binary Regression

We consider the case of binary regression. We have a binary response variable

Y and a d-dimensional covariate x belonging to a compact subset X ∈ R
d. We

want to estimate the response probability p(x) = P(Y = 1|x). The relation

p(x) = H(η(x)) induces a prior for the function p(x). We consider for η a

Gaussian process and H a known cumulative distribution function on R, that

is strictly increasing and Lipschitz continuous. The posterior distribution is

said to be consistent (see definition 10) if posterior probability of any small

neighborhood containing the true parameter value converges to one.

We choose the covariance kernel of the form

σ(x, x′) = τ−1σ0(λx, λx′), (6)

where σ0(·, ·) is a nonsingular covariance kernel and τ > 0 and λ > 0 are two

hyper-parameters. We indicate the hyper-priors on τ and λ, respectively,

with Πτ and Πλ, two absolutely continuous probability measures on R
+.

The space of response probability functions used is

Θn,α = {p(·)|p(x) = H(η(x)), ||Dwη||∞ < Mn, |w| 6 α}, (7)

Dwη stands for (∂|w|/∂w1t1 . . . ∂wdtd)η(t1, . . . , td), |w| =
∑d

i=1 wi, α is a po-

sitive integer and Mn is a sequence of real numbers. λn and τn are chosen

such that Πλ(λ > λn) = e−cn and Πτ (τ < τn) = e−cn, with c > 0. The

possible priors on η are chosen from the reproducing kernel Hilbert space of

σ0 A.

We consider the following assumptions.

A 1. ∀x ∈ X , the covariance function σ0(x, ·) has continuous partial deriva-

tives up to order 2α + 2. α will be properly chosen.

The mean function µ(x) belongs to Ā.

The support of Πλ is R
+.

A 2. The covariate space X is a bounded subset of R
d.

A 3. The transformed true response function η0 belongs to Ā.
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A 4. ∀ b1 > 0 and b2 > 0, there exist sequences Mn, λn and τn such that

M2
nτnλ

−2α
n > b1n and Md/α

n 6 b2n.

We enunciate three theorems about consistency. The first is for the case

of covariates arising from a distribution Q on the space of covariates X .

Theorem 13. The random covariate X is sampled from the distribution Q.

We assume that Assumptions 1, 2, 3 and 4 hold. Then, ∀ ǫ > 0,

Π

(

p :

∫

X

|p(x) − p0(x)| dQ(x) > ǫ
∣

∣

∣
Y1, . . . , Yn, X1, . . . , Xn

)

→ 0

in P n
0 -probability.

If Q is unknown, we must give a prior on Q but if we assume that p is

unrelated to Q and so with independent priors, posterior distributions of p

and Q will be independent and we do not need to specify a prior for Q.

The second theorem is for the case of fixed design covariates:

Theorem 14. We assume that Assumptions 1, 2, 3 and 4 hold. Then,

∀ ǫ > 0,

Π

(

p :

∫

X

|p(x) − p0(x)| dQn(x) > ǫ
∣

∣

∣
Y1, . . . , Yn

)

→ 0

in P n
0 -probability.

The third theorem is for one-dimensional covariate and we use assump-

tion 1 and we replace assumptions 2, 3, 4 with the foolowing. Let xi,n be the

covariate values in ascending order and let Si,n = xi+1,n−xi,n be the distance

between two consecutive covariate values.

A 5. Let δ > 0, there exist K1 and an integer N such that, for n > N , we

have that
∑

i:Si,n>k1n−1

Si,n 6 δ.
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Theorem 15. Suppose that Assumption 5 holds and that X is a bounded

interval of R. Assume that for the prior Assumption 1 holds. We assume

that η0(x) and the mean function µ(x) have continous derivatives on X up to

the second order, that the covariance kernel has continous partial derivatives

up to the six order and that Πλ and Πτ are such that τ−1
n λ4

n = O(n). Then,

∀ ǫ > 0,

Π

(

p :

∫

X

|p(x) − p0(x)| dx > ǫ
∣

∣

∣
Y1, . . . , Yn

)

→ 0

in P n
0 -probability.

For the proof of Theorem 13 we must use an upper bound for the ǫ-

covering number N(ǫ, Θn, dV ) (defined as the number of ǫ-balls required to

cover the space of density P with respect to the metric dV ) and an estimation

of the probability of the complement of the sieve Θn defined in (7). The result

is obtained by verifying prior positivity and entropy conditions of the general

results of Ghosal, Ghosh and Ramamoorthi [9].

We consider a binary response variable Y corresponding to a vector valued

covariate X. We want to estimate the response probability function

p(x) = P(Y = 1|X = x) (8)

for every x belonging to the covariate space, assuming indipendent observa-

tions. Our approach is to consider the model p(x) = H(η(x, β)), where H

is a cumulative distribution function called link function and η(x, β) is gene-

rally a nonlinear function depending on the covariate values and an unknown

parameter β.

We induce a prior probability on p(x) using a Gaussian process η(x)

through the relation p(x) = H(η(x)) where the link function H : R →
[0, 1] is a smooth cdf. The process mean function indicates where the prior

probability is concentrated, while the covariance kernel gives the smoothness

of the sample paths of the process. In particularly, we need sample paths

to be a dense subset of the space of all continuous function f : X → R.

The link function H maps the image of the Gaussian process into the unit
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interval to make it possible to think in probability terms. For H, we use the

probit link function and we introduce (see [2]) some latent variables to give

a partial conjugacy to our model in order to simplify calculations.

Let Y = (Y1, . . . , Yn)t be the random vector of our binary response ob-

servations corresponding to the covariate value X = (X1, . . . , Xn)t, where

each Xi has d components. If the observed value of X is x = (x1, . . . , xn)t,

then, conditional on X, we assume Yi’s are independent random variables

with success probability p(xi) for a smooth function p(x) that is the function

we want to estimate. Let X be the set of all covariate values. We assume X
is compact.

We define, as prior, a Gaussian process with mean function µ(x) and

covariance kernel σ(x, y). If x1, . . . , xn are the covariate values correspon-

ding to the observed variables Yi’s, we define x′
1, . . . , x

′
k as the distinct co-

variate values and di as the number of x′
i’s that are present in the ob-

served vector (x1, . . . , xn)t, x̃ = (x′
1, . . . , x

′
k)

t, η̃ = (η(x′
1), . . . , η(x′

k))
t, µ̃ =

(µ(x′
1), . . . , µ(x′

k))
t and Σ = (σij) the matrix such that σij = σ(x′

i, x
′
j). For

some x that is different from all xi’s, we have the following theorem:

Theorem 16. The conditional distribution of η(x) given η̃ is normal with

mean µ(x) + σ(x, x̃)tΣ−1(η̃ − µ̃) and variance σ(x, x) − σ(x, x̃)tΣ−1σ(x, x̃)

where σ(x, x̃) = (σ(x, x′
1), . . . , σ(x, x′

k))
t.

Now, let H be the standard normal cdf Φ. We introduce some latent

variables as in Albert and Chib [2]. Let Z = (Z1, . . . , Zn)t be these unob-

servable latent variables such that, conditional on η, Zi’s are independent

normal variables with mean η(xi) and variance 1. We assume Yi’s are func-

tions of these variables, and Yi = 1(Zi > 0). Thus, Yi’s, conditional on η, are

independent Bernoulli random variables with success probability Φ(η(xi)).

We define U = (U1, . . . , Uk) where Ui = 1
di

∑

j Zj and Zj’s are such that

their corresponding covariate value is x′
i. If D is the diagonal matrix with

the i-th diagonal element equal to di, then we obtain the following theorem:

Theorem 17. The conditional distribution of η̃ given (Z, Y ) is a k-variate

normal with mean vector µ∗ = Σ∗D(U − µ̃) + µ̃ and covariance matrix Σ∗ =
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(D + Σ−1)−1, i.e.

η̃|(Z, Y ) ∼ Nk(µ
∗, Σ∗). (9)

The conditional distributions of the latent variables Zi’s given (η̃, Y ) are

Zi|η̃, Y
ind.
∼







N(η(xi), 1)|Zi < 0 if Yi = 0

N(η(xi), 1)|Zi > 0 if Yi = 1
(10)

In an eventual Gibbs sampler algorithm we can use the conditional distribu-

tions (9) e (10) to sample from the joint distribution of (η̃, Z|Y ), discarding

Z that is not useful for our purpose.

If H is the cdf of a smooth unimodal symmetric density on the entire

real line, H can be represented as the scale mixture of standard normal cdf

with respect to a cdf G taking values on (0, +∞). We can introduce two sets

of unobservable latent variables: Z = (Z1, . . . , Zn)t and V = (V1, . . . , Vn)t.

These variables are such that

Vi|η̃ i.i.d.
∼ G,

Zi|η̃, V
ind.
∼ N(η(xi), V

−1
i )

where, as above, Yi = 1(Zi > 0). Defining DV as the diagonal matrix with

i-th diagonal element equals to divi and if G has Lebesgue density g, we have

the following theorem:

Theorem 18. Let µ∗
V and Σ∗

V be, respectively, equal to Σ∗
V DV (U − µ̃) + µ̃

and (DV + Σ−1)−1. Then

η̃|Z, V, Y ∼ Nk(µ
∗
V , Σ∗

V ), (11)

Vi|Z, η̃, Y
ind.
∼ gi(v) ∝ φ

(

(Zi − η(xi))
√

v)
)

g(v), (12)

Zi|V, η̃, Y ∼







N(η(xi), V
−1
i )|Zi < 0 if Yi = 0

N(η(xi), V
−1
i )|Zi > 0 if Yi = 1

(13)

Now, we present the hierarchical model we use for the algorithm. For the

mean function we use the parametric form

µ(x, β) = β1µ1(x) + · · · + βmµm(x) (14)
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where m is fixed, β = (β1, . . . , βm)t is unknown and µ1, . . . , µm are known

functions on X . For the covariance kernel we choose σ(x, x′) = 1
τ
σ0(x, x′; λ)

with σ0 a known kernel and τ > 0, λ two unknown hyper-parameters. Then,

the hierarchical model is the following:

τ ∼ Gamma(a, b),

β|τ ∼ Nm(β0, Γ),

η|β, τ ∼ Gaussian Process(µ(·, β), σ0(x, x′; λ)/τ),

Yi|η̃, β, τ ∼ Bernoulli(Φ(ηi)) (independent).

We introduce latent variables Zi’s as above and we define Σ̃0 as the k × k

matrix with (i, j)-th element equals to σ0(x
′
i, x

′
j; λ) and M as the k × m

matrix with (i, j)-th element equals to µj(x
′
i).

The conditional distributions (η̃|β, τ, Z, Y ) and (Z|β, τ, η̃, Y ) are simi-

lar to (9) and (10), while the conditional distributions (β|τ, η̃, Z, Y ) and

(τ |β, η̃, Z, Y ) are giving from the following

Theorem 19. Let Γ∗, β∗
0 , a∗ and b∗ be, respectively, equal to (τM tΣ̃−1

0 M +

Γ−1)−1, τΓ∗M tΣ̃−1
0 (η̃ − Mβ0) + β0, a + k

2
and b + 1

2
(η̃ − Mβ)tΣ̃−1

0 (η̃ − Mβ).

Then

β|τ, η̃, Z, Y ∼ Nm(β∗
0 , Γ

∗), (15)

τ |β, η̃, Z, Y ∼ Gamma(a∗, b∗). (16)

We use the conditional distributions (9), (10), (15) and (16) in our algorithm

to generate from (β, τ, η̃, Z|Y ).

The non-informative choice for the hyper-parameters, that means to choice

the matrix Γ−1 as the zero matrix and a = b = 0, simplifies the parameters

β∗
0 , a∗ and b∗ as it follows:

β∗
0 =(M tΣ̃−1

0 M)−1M tΣ̃−1
0 (η̃ − Mβ0) + β0 =

(M tΣ̃−1
0 M)−1M tΣ̃−1

0 MM t(MM t)−1η̃ = M t(MM t)−1η̃,

a∗ =
k

2

b∗ =
1

2
(η̃ − Mβ)tΣ̃−1

0 (η̃ − Mβ)

13



Since β0 does not appear we may arbitrary choose it.

For an implementation we consider a dataset on the Donner party that

is a group of wagon train emigrants. The dataset donner is included in the

LearnBayes package of R and contains the age, the gender and the survival

status for 45 members of the party age 15 to 65. We analyze this data set in

three cases.

The first is the classical case and we use the regression model P(Yi = 1) =

Φ(β0 + β1x1,i + β2x2,i), where x1,i stands for the age of the i-th member and

x2,i stands for the gender (1 if male, 0 if female). We estimate the parameters

β0, β1 and β2 with the maximum likelihood. We use the R function glm with

the probit link.

The second case is the parametric Bayesian case. We analyze the data set

with a non-informative prior for β. The regression model is the same as in

the classical case. The R function bayes.probit, contained in the LearnBayes

pack, gives a simulated sample from the joint posterior distribution of the

regression vector β.

The third is the nonparametric case. The regression model is the hier-

archical model previously presented. We use, for β, a multivariate normal

prior with mean (0, 0, 0) and covariance matrix 5 · 104I3. We use, for τ , a

gamma prior with shape parameter 60 and rate parameter 50. We consider,

for the process, the mean function and the covariance kernel

µ(x, β) = β0 + β1x1 + β2x2, where x2 = {0, 1},

σ(x(1), x(2)) =
1

τ

10

|x(1)
1 − x

(2)
1 | + |x(1)

2 − x
(2)
2 | + 2

.

The Gibbs sampling algorithm samples from the full conditional densities

and, descarding the first 1000 values of β, we obtain the two curves of survival

probabilities plotted by age. The code is the following:
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> n<-length(donner$age)

> X<-donner

> X.ord<-X

> for (i in 1:(n-1)){

+ for (j in 1:(n-i)){

+ a<-X.ord[j,]

+ b<-X.ord[j+1,]

+ if (a[1]>b[1]){

+ X.ord[j,]<-b

+ X.ord[j+1,]<-a}

+ if (a[1]==b[1]){

+ if (a[2]<b[2]){

+ X.ord[j,]<-b

+ X.ord[j+1,]<-a}}

+ }}

> d<-c()

> B<-X.ord

> B[1,]<-X.ord[1,]

> i<-2

> y<-matrix(ncol=2,nrow=n)

> k<-n

> for (h in 1:n){

+ d[h]<-1

+ y[h,1]<-i-1

+ while(i<=n && (B[h,1]==X.ord[i,1]) && (B[h,2]==X.ord[i,2])){

+ d[h]<-d[h]+1

+ i<-i+1

+ k<-k-1

+ }

+ y[h,2]<-i-1

+ B[h+1,]<-X.ord[i,]
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+ i<-i+1}

> y<-y[1:k,]

> B1<-matrix(nrow=k,ncol=2)

> for(i in 1:k){

+ for(j in 1:2){

+ B1[i,j]<-B[i,j]}}

> M<-matrix(ncol=3,nrow=k)

> for(i in 1:k){

+ M[i,1]<-1

+ M[i,2]<-B1[i,1]

+ M[i,3]<-B1[i,2]

+ }

> d<-d[1:k]

> D<-diag(d)

> Y<-c()

> Y<-X.ord[,3]

>

> beta0<-c(0,0,0)

> a<-60

> b<-50

> beta.in<-beta.hat2

>

> gamma<-c(.0005,.0005,.0005)

> inv.gamma<-diag(gamma)

>

> sigma0<-function(x1,x2){

> a<-(x1[1]-x2[1])

> a1<-abs(a)

> b<-(x1[2]-x2[2])

> b1<-abs(b)

> return(10/(a1+b1+2))
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> }

>

> sigma0.tilde<-matrix(nrow=k,ncol=k)

> for (i in 1:k){

+ for (j in 1:k){

+ sigma0.tilde[i,j]<-sigma0(B1[i,],B1[j,])

+ }}

> inv.sigma0.tilde<-solve(sigma0.tilde)

>

> mu.tilde.gen<-function(beta,M){

+ mu.tilde<-c()

+ mu.tilde<-beta%*%t(M)

+ return(mu.tilde)}

>

> mu.tilde.in<-mu.tilde.gen(beta.in,M)

> mu0<-mu.tilde.gen(beta0,M)

> eta.tilde.in<-mu.tilde.in

>

> eta.gen<-function(eta.tilde,y){

+ k<-length(eta.tilde)

+ eta<-c()

+ for(i in 1:k){

+ for(j in y[i,1]:y[i,2]){

+ eta[j]<-eta.tilde[i]

+ }}

+ return(eta)}

>

> Z.gen<-function(Y,eta.tilde,n,y){

+ Z<-c()

+ eta<-eta.gen(eta.tilde,y)

+ bb<-pnorm(-eta)
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+ tt=(bb*(1-Y)+(1-bb)*Y)*runif(n)+bb*Y

+ Z<-qnorm(tt)+eta

+ return(Z)}

>

> Z.in<-Z.gen(Y,mu.tilde.in,n,y)

>

> U.gen<-function(Z,d,y){

+ k<-length(d)

+ U<-rep(0,times=k)

+ for(i in 1:k){

+ for(j in y[i,1]:y[i,2]){

+ U[i]<-U[i]+Z[j]}

+ U[i]<-U[i]/d[i]}

+ return(U)}

>

> U.in<-U.gen(Z.in,d,y)

>

> eta.tilde.gen<-function(D,inv.sigma0.tilde,tau,U,mu.tilde){

+ eta.tilde<-mvrnorm(n=1,mu=solve(D+tau*inv.sigma0.tilde)%*%

+ D%*%t(U-mu.tilde),Sigma=solve(D+tau*inv.sigma0.tilde))

+ return(eta.tilde)}

>

> beta.gen<-function(eta.tilde,tau,inv.gamma,beta0,M,

+ inv.sigma0.tilde,mu0){

+ gamma.ast<-solve(tau*t(M)%*%inv.sigma0.tilde%*%M+inv.gamma)

+ beta0.ast<-(tau*gamma.ast%*%t(M)%*%inv.sigma0.tilde%*%

+ t(eta.tilde-mu0))+beta0

+ beta<-mvrnorm(n=1,mu=beta0.ast,Sigma=gamma.ast)

+ return(beta)}

>

> tau.gen<-function(k,eta.tilde,M,beta,inv.sigma0.tilde,a,b){
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+ tau<-rgamma(n=1,shape=a+k/2,rate=b+0.5*((eta.tilde-beta%*%

+ t(M))%*%inv.sigma0.tilde%*%t(eta.tilde-beta%*%t(M))))

+ return(tau)}

>

> tau.in<-a/b

> tau<-tau.in

> mu.tilde<-mu.tilde.in

> U<-U.in

> Z<-Z.in

> beta2<-matrix(nrow=10000,ncol=3)

> for(i in 1:10000){

+ eta.tilde<-c()

+ eta.tilde<-eta.tilde.gen(D,inv.sigma0.tilde,tau,U,mu.tilde)

+ Z<-Z.gen(Y,eta.tilde,n,y)

+ U<-U.gen(Z,d,y)

+ beta2[i,]<-beta.gen(eta.tilde,tau,inv.gamma,beta0,M,

+ inv.sigma0.tilde,mu0)

+ mu.tilde<-mu.tilde.gen(beta2[i,],M)

+ tau<-tau.gen(k,eta.tilde,M,beta2[i,],inv.sigma0.tilde,a,b)}

> summary(beta2)

V1 V2 V3

Min. :-10.2786 Min. :-0.23390 Min. :-3.8752

1st Qu.: -1.0704 1st Qu.:-0.06247 1st Qu.:-0.9363

Median : 0.8371 Median :-0.01960 Median :-0.2791

Mean : 0.8149 Mean :-0.01991 Mean :-0.2837

3rd Qu.: 2.6678 3rd Qu.: 0.02250 3rd Qu.: 0.3672

Max. : 12.0784 Max. : 0.21215 Max. : 3.4516

> par(mfcol=(c(3,2)))

> plot(beta2[,1],type="l",xlab="Iterations",ylab="",
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+ main="Trace of (Intercept)")

> plot(beta2[,2],type="l",xlab="Iterations",ylab="",

+ main="Trace of age")

> plot(beta2[,3],type="l",xlab="Iterations",ylab="",

+ main="Trace of male")

> plot(density(beta2[,1]),ylab="",main="Density of (Intercept)")

> points(beta2[,1],rep(0,times=10000),pch=20)

> plot(density(beta2[,2]),ylab="",main="Density of age")

> points(beta2[,2],rep(0,times=10000),pch=20)

> plot(density(beta2[,3]),ylab="",main="Density of male")

> points(beta2[,3],rep(0,times=10000),pch=20)

>

> beta3<-matrix(ncol=3,nrow=9000)

> for(i in 1:9000){

+ beta3[i,]<-beta2[1000+i,]}

> beta.hat3<-c()

> beta.hat3[1]<-sum(beta3[,1])/9000

> beta.hat3[2]<-sum(beta3[,2])/9000

> beta.hat3[3]<-sum(beta3[,3])/9000

> beta.hat3

[1] 0.81163233 -0.01985297 -0.28357137

> windows()

> curve(pnorm(beta.hat3[1]+beta.hat3[2]*x+beta.hat3[3]),

+ from=15,to=65,ylim=c(0,1),col="blue",xlab="Age",

+ ylab="P(Y=1|X=x)",main="Survival probability")

> curve(pnorm(beta.hat3[1]+beta.hat3[2]*x),from=15,to=65,

+ add=TRUE,ylim=c(0,1),col="red")

> legend(50,0.9,c("male","female"),lty=1,col=c("blue","red"))

>

> quant<-matrix(nrow=3,ncol=2)

> quant2[1,]<-quantile(beta3[,1],probs=c(0.05,0.95))
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> quant2[2,]<-quantile(beta3[,2],probs=c(0.05,0.95))

> quant2[3,]<-quantile(beta3[,3],probs=c(0.05,0.95))

>

> windows()

> curve(pnorm(beta.hat3[1]+beta.hat3[2]*x+beta.hat3[3]),

+ from=15,to=65,ylim=c(0,1),xlab="Age",ylab="P(Y=1|X=x)",

+ col="blue",main="Male survival probability")

> curve(pnorm(quant2[1,1]+quant2[2,1]*x+quant2[3,1]),lty=2,

+ from=15,to=65,col="blue",add=TRUE,ylim=c(0,1))

> curve(pnorm(quant2[1,2]+quant2[2,2]*x+quant2[3,2]),lty=4,

+ col="blue",from=15,to=65,add=TRUE,ylim=c(0,1))

> legend(48,0.8,c("5% quantile","95% quantile","mean"),

+ lty=c(2,4,1),col=c("blue","blue","blue"))

>

> windows()

> curve(pnorm(beta.hat3[1]+beta.hat3[2]*x),from=15,to=65,

+ ylim=c(0,1),xlab="Age",ylab="P(Y=1|X=x)",

+ col="red",main="Female survival probability")

> curve(pnorm(quant2[1,1]+quant2[2,1]*x),lty=2,from=15,

+ to=65,col="red",add=TRUE,ylim=c(0,1))

> curve(pnorm(quant2[1,2]+quant2[2,2]*x),lty=4,from=15,

+ to=65,col="red",add=TRUE,ylim=c(0,1))

> legend(48,0.8,c("5% quantile","95% quantile","mean"),

+ lty=c(2,4,1),col=c("red","red","red"))
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Figure 1: There are the curves for male survival probability obtained with

all the algorithms.
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Figure 2: There are the curves for female survival probability obtained with

all the algorithms.
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Figure 1 shows the male survival probability curves obtained with the

three different approaches and the quantile curves for the non-informative

case and the nonparametric case. Figure 2 shows the female survival pro-

bability curves and the quantile curves for the non-informative case and the

nonparametric case. With our choices of covariance kernel and prior distri-

butions, the result obtained with the nonparametric approach differs from

both classical case and parametric non-informative case.
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