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Introduction

This thesis is about the Class Number. We will deal with its algebraic, ana-
lytic and computational theory.
The Class Number has a very important role either in Analytic Number
Theory, where it has been used in the proof of the Theorem of the existence
of infinitely many primes in a given arithmetic progression, or in Algebraic
Number Theory, since it measures how far the ring of integers of a number
field is from being a Unique Factorization Domain (UFD). At first the Class
Number has been defined in the theory of binary quadratic forms. It repre-
sents, in fact, the number of the classes of a defined equivalence relation in
which the forms ax2 + bxy + cy2 with a, b, c ∈ Z and a fixed discriminant
d = b2− 4ac , split. Then, in the theory of number fields, it has been defined
as the order of a quotient group, said Class Group.
In 1832 Jacobi conjectured a Class Number formula. In 1839 Dirichlet proved
this famous formula and used it to complete the proof of the following theo-
rem [17]:

Theorem 0.1. (Existence of infinitely many primes in a given artihmetic
progression.) If a, q ∈ N, (a, q) = 1 and if P is the set of all the primes ,
then

# {a, a + q, a + 2q, . . . } ∩ P = ∞.

The connection between the Class Number and the Theorem 0.1 is given
by the definition of the so-called Dirichlet’s characters and of particular func-
tions, similar to the Riemann Zeta function, said Dirichlet’s L-functions.
These objects, which are related, will be used often in our work.
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A Dirichlet’s character modulo an integer q is a function

χ : Z −→ C

with the following properties :

1. χ is periodic with period q, i.e. χ(n + q) = χ(n), ∀n ∈ N;

2. χ is multiplicative, i.e. χ(n ·m) = χ(n) · χ(m), ∀n, m ∈ N;

3. χ is supported on U (Z/qZ), i.e. χ(n) = 0 when (q, n) 6= 1.

It is possible that for values of n such that (n, q) = 1 the function χ(n) may
have a period less than q, in this case the character is said imprimitive and
otherwise primitive. We are interested in primitive characters. It is possible
to prove that all the real primitive characters are identical with the Jacobi
symbols

(
d
n

)
where d is a product of relatively prime factors of the form

−4, 8, − 8, (−1)(p−1)/2p

where p > 2, p prime. Moreover the Jacobi symbol is a real primitive char-
acter modulo |d|. A useful result about the characters which we are going
to use are the Ortogonality Laws and the inequality found in 1918 by Polya
and Vinogradov. [18, 19]

Proposition 0.1. (Ortogonality Laws of characters)
If χ is a character modulo q

1. ∑
n∈(Z/qZ)

χ(n) =

ϕ(q) if χ = χ0

0 if χ 6= χ0

where

χ0 =

0 if (n, q) 6= 1

1 if (n, q) = 1

is said the principal character modulo q.
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2. ∑
χ( mod q)

χ(n) =

ϕ(q) if n ≡ 1(modq)

0 otherwise
.

Theorem 0.2. (Polya-Vinogradov Inequality)
If χ is a nonprincipal character modulus q, then

M+N∑
n=M+1

χ(n) � q1/2 log q.

Dirichlet’s L-functions are defined as

L(s, χ) =
∞∑

n=1

χ(n)

ns

and they are absolutely convergent for Re s > 1. As for the Riemann Zeta
function, it is possible to write this function as an Euler product that is

L(s, χ) =
∏

p prime

(
1− χ(p)

ps

)−1

.

Moreover, again as the Zeta function, the L-series satisfy a functional equa-
tion which we are going to use a lot in our results. This equation takes
different forms according as χ(−1) = 1 or χ(−1) = −1, where χ is a primi-
tive character modulo q. If χ(−1) = 1, we haveπ−

1
2
(1−s)q

1
2
(1−s)Γ

[
1
2
(1− s)

]
L(1− s, χ)

= q
1
2

τ(χ)
π−

1
2
sq

1
2
sΓ(1

2
s)L(s, χ),

where Γ(s) =
∫∞

0
e−tts−1dt is the Gamma function and |τ(χ)| = q1/2 for a

primitive character; in the case χ(−1) = −1 the equation becomesπ−
1
2
(2−s)q

1
2
(2−s)Γ

[
1
2
(2− s)

]
L(1− s, χ)

= iq
1
2

τ(χ)
π−

1
2
(s+1)q

1
2
(s+1)Γ

[
1
2
(s + 1)

]
L(s, χ).

Dirichlet realized that, in order to prove Theorem 0.1, it needs to prove that
if χ 6= χ0, χ primitive character, then L(1, χ) 6= 0. Nowadays this can be
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proved by the complex analysis methods but Dirichlet did not know it. So he
used only real analysis and particularly the connection between real primitive
characters and the theory of binary quadratic forms or the equivalent theory
of quadratic fields. In fact it is simple to prove that the numbers d described
above are identical with particular discriminants, said fundamental, in the
theory of binary quadratic forms, and the discriminants of the quadratic
fields in the theory of number fields. In his work, Dirichlet found a connec-
tion between the Class Number of quadratic forms with a given discriminant
d and the L-function L(1, χ), where χ is a real primitive character

(
d
n

)
and

this is the Kronecker symbol, that is the real extension of the Jacobi symbol.
This connection allowed him to prove that L(1, χ) is strictly positive, and
moreover to find an expression of such an L-function as a finite sum.
In this thesis at first, like in Dirichlet’s work, we study briefly the theory of
binary quadratic forms to obtain the Class Number Formula, then we study
Class Numbers from the point of view of the algebraic number theory and
its analytic properties and, in the last chapter, we deal with the computa-
tional problem, that is we analise the algorithm found until now to compute
efficiently the Class Number and the structure of the Class Group.
Our work is organized in the following way.

In Chapter 1 we define an equivalence relation in the set of the binary
quadratic forms of a fixed discriminant d in the following way: two forms
F and G are said to be equivalent if they are under a unimodular transfor-
mation. That is if there exist r, s, t and u ∈ Z such that ru − st = 1, such
that

F (rX + sY, tX + uY ) = G(X,Y ).

So, we define, given a discriminant d, the Class Number h(d) as the number
of equivalence classes of forms with discriminant d. We prove the finiteness
of h(d) [28] using the result, proved by Langrange, that in every equivalence
class there is a unique reduced form. That is a form F (x, y) = ax2+bxy+cy2

such that |b| ≤ |a| ≤ |c|. Then we try to find a formula for h(d) studing the
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transformations between forms and the problem of the representability of
an integer by particular forms. An interesting result is about the number of
unimodular transformations of a form F into itself (the so called automorphs).
If the form has a negative discriminant d we can prove that the number of
these transformations is

w =


2 if d < −4

4 if d = −4

6 if d = −3

,

while, if d is positive, we have a different situation because all the trans-
formations of F into itself are related to the infinity solutions of the Pell’s
equation t2 − du2 = 4. [29]
The question of the representability of a number by a form can be expressed
in the following way: given a system of representatives, that is a set of forms
(one for each class), how many are the representations of a positive integer
k (i.e. the pairs (x, y) such that F (x, y) = k), by forms belonging to a such
system? Since, when d is positive, every representation by a form F gives
rise to an infinity of others by the applications of the automorphs of such a
form, we consider particular representations, said primary, which are in every
case of finite number. A representation of a positive integer k by a form of
coefficients a, b, c is said primary if d < 0 in every case, while, if d > 0, when
the following conditions are verified

1. 2ax + (b−
√

d)y > 0,

2. 1 ≤ 2ax+(b+
√

d)y

2ax+(b−
√

d)y
< ε2

where ε = t0+u0

√
d

2
and (u0, t0) is the smallest positive solutions of the Pell’s

equation (i.e. the solution for which t0 has the smallest possible positive
value and for which x0 > 0).
One of the main results of the theory of quadratic forms, which allow us to
obtain a relation between h(d) and L(1, χ), where χ(n) =

(
d
n

)
is a character

modulo d, is that the number Ψ(k) of primary representations of a positive
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integer k, where (k, d) = 1, by forms belonging to a system of representatives
is finite and is expressed by the formula:

Ψ(k) = w
∑
n|k

(
d

n

)
.

The proof of such a result is based on the fact that the number of solutions
of the congruence x2 ≡ d(mod4k), when 0 ≤ x < 2k, is

∑
f |k

(
d
f

)
. Here the

sum is extendedon square-free values of f .
The second step of our work is to determine the average value of Ψ(k) as
k varies; in order to do it we use the properties of Dirichlet’s characters (in
particular way the Ortogonality Laws). We obtain the following result

lim
τ→∞

H(τ)

τ
= w

ϕ(|d|)
|d|

L(1, χ),

where
H(τ) =

∑
1≤k≤τ
(k,d)=1

Ψ(k).

Moreover, using elementary results of Number Theory, we have that, if we
set

H(τ, F ) =
∑

1≤k≤τ
(k,d)=1

Ψ(k, F ),

where Ψ(k, F ) is the number of primary representations of k by a form F of
the representative system, it follows

lim
τ→∞

H(τ, F )

τ
=


2π√
|d|

ϕ(|d|)
|d| if d < 0

log ε√
d

ϕ(d)
d

if d > 0.

From the defintion of the Class Number and the above results, we obtain the
goal of the chapter that is Dirichlet’s formula:

h(d) =


w
√
|d|

2π
L(1, χ) if d < 0

√
d

log ε
L(1, χ) if d > 0.
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In a similar way, using also results from the classical theory of Fourier series,
we are able to write L(1, χ) as a finite sum:

L(1, χ) =

− 1√
d

∑d−1
r=1

(
d
r

)
log sin

(
πr
d

)
d > 0

− π
|d|3/2

∑|d|−1
r=1

(
d
r

)
r d < 0.

In Chapter 2 at first we recall some fundamental facts about algebraic number
theory. We are particularly interested in the number fields, and in particular
in the quadratic fields, that are the subfields of C with dimension 2 as Q
vector spaces and so expressed in the form Q(

√
d), where d is a square-free

integer, d 6= 1. We also recall the definitions of discriminant, trace and norm.
In order to give a new definition of the Class Number we use the ring of in-
tegers OK of a number field K (and in particular its ideals) that is the set
of the elements of K which are roots of a monic polynomial with integral
coefficients. An important question is to know when the ring of integers of
a quadratic field is a UFD as d varies. This problem was studied for the
first time by Gauss in its Disquisitiones Arithmeticae and it has been solved
only in the case d < 0. In 1967, in fact, Baker and Stark [2, 33] proved that
OQ(

√
d) is a UFD only for nine values of d, precisely

−1,−2,−3,−7,−11,−19,−43,−67,−163.

In the case d > 0 Gauss conjectured that OQ(
√

d) is a UFD for infinitely many
values of d. Today this problem is still unsolved but we know several positive
values of d for which the unique factorization occurs.
In the central part of this chapter we define the Class Group of a number
field K using the ideals of OK and in particular the so-called fractional ideals,
that are OK-submodules F of K which can be written as F = d−1I where d

is an element of OK different from zero and I ⊆ OK an ideal.
Fractional ideals form a group under the multiplication. So, the Class

Group is the quotient of the group of fractional ideals of OK by the nor-
mal subgroup of principal fractional ideals, that is Cl(OK) = F(OK)

P(OK)
where
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F(OK) = {F |F fractional ideal of OK } and P(OK) = {zOK |z ∈ K, z 6= 0}.
The order of the Class Group is also said Class Number. Now the proof of
the finiteness of the Class Number comes from a fundamental result in the
geometry of numbers, the Minkowsky’s Theorem of 1896, and from the con-
cept of the norm of an ideal, defined as the order of the quotient of OK by
the ideal. We have outlined the connection between the Class Number and
the factorization in the ring of integers of a number field, this connection is
evident from the definition of the Class Group stated above; in fact, since the
ring of integers of a number field is a Dedekind domain, it is a UFD if and
only if all the ideals are principal, also the fractional ideals, and this means
that the Class Group has order 1 and so the Class Number is equal to 1.
In the last part of the chapter we connect all these results with those of
the previous chapter, that is we analise the connections between the the-
ory of quadratic forms and the theory of the ideals in the ring of integers of
quadratic fields. We describe, using two lemmas, the existence of a correspon-
dence between ideals and forms and we state the so-called Correspondence
Theorem [16] according to which equivalent forms corresponds to equiva-
lent ideals and conversely, where we have to use the definition of the narrow
equivalence between ideals (two ideals I and J are said to be strictly equiv-
alent if there exists two principal ideals 〈a〉, 〈b〉 such that I〈a〉 = J〈b〉 and
N(ab) > 0.) This correspondence allow us to talk, in the case of fundamental
discriminant, in the same way, about the Class Number of forms of discrimi-
nant d or about the Class Number of a quadratic field Q(

√
d), and to obtain

again, working with the ideals, Dirichlet’s Class Number Formula.

In Chapter 3 we deal with some questions about the Class Number which
have interested mathematicians also in recent years. A famous problem,
called Gauss’s Class Number Problem is that to determine, given an inte-
ger m, all the negative fundamental discriminants having the Class Number
equal to m. Such a problem in the case m = 1 is equivalent to find all the
values of −d such that the quadratic imaginary field Q(

√
−d) is a UFD; it
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has been solved, as we said in the second chapter, finding only nine values
of −d. In the case m 6= 1, until now the question has been solved only in
particular cases, for example for 5 ≤ m ≤ 23 when m is odd.
The main question in this chapter is to study the behavior of the Class Num-
ber as d varies, finding asymptotic estimates for h(d) and for its mean value.
Also in this case Gauss stated some conjectures. He said that h(d) →∞ as
d → −∞ and this, after the attempts of Hecke and Heilbronn, was proved in
1935 by Siegel by his famous ineffective theorem [22] about the L-series. The
Theorem of Siegel gives an estimate of L(1, χ) from which, using the Class
Number Formula , follows an inequality for the Class Number; in particular
we obtain h(d) > C2(ε)|d|

1
2
−ε, if d is negative, and h(d) log η > C2(ε)d

1
2
−ε if

d is positive, where η is the fundamental unity of the field Q(
√

d) and C2(ε)

is an ineffective constant.
Using again the Polya-Vinogradov inequality and the expression of L(1, χ) as
a finite sum, found in the first chapter, we have some estimates of h(d), i.e.
log(h(d)): log(

√
|d|) if d → −∞, and log(h(d) log(η)): log(

√
d) if d →∞.

In order to estimate the mean value of h(d), that is the average number
of quadratic forms of a fixed discriminant d, we prove a result found by
Siegel in 1944 according to which, if d is a square-free integer such that
d ≡ 0, 1(mod4), it follows∑

0<−d<N

h+(d) =
π

18ζ(3)
N3/2 + O(N log N)

and ∑
0<d<N

h+(d) log η+ =
π2

18ζ(3)
N3/2 + O(N log N)

where h+(d) is the Class Number obtained from the narrow equivalence of
ideals, ζ(s) is the Riemann Zeta function and η+ = t+u

√
d

2
where (t, u) is the

smallest positive solution of the Pell’s equation t2 − du2 = 4. To prove these
estimates we use a lot the properties of the Jacobi symbol

(
d
n

)
and the fact

that it represents a primitive character modulo |d|. From this result, by the
definition of fundamental discriminant and the expansion of the Riemann
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Zeta function as a Euler product, we obtain that, if d < 0,∑
0<−d≤N

h(d)√
|d|

=
N

2π
C + O(N3/4 log N),

and, if d > 0, ∑
0<d≤N

h(d) log η+

√
d

=
N

4
C + O(N3/4 log N)

where
C =

∏
p

(
1− 1

p2(p + 1)

)
and the sums are over fundamental discriminants.
In the last part of the Chapter we state a list of conjectures about the be-
havior of the Class Number and the Class Group which are called "Cohen
and Lenstra Heuristics" [9], from the names of the mathematics which pro-
posed them. These conjectures are very important because until now we
know very few theorems about this argument. Moreover many results have
been confirmed by a large number of experimental observations. Some of
these conjectures are about the frequency with which odd primes p divide
the Class Number, the probability that the odd part of the Class Group is
non-cyclic, and the number of non-cyclic factors of the p-Sylow subgroups.
An interesting hypothesis is that the probability that the subgroup of all the
elements of the Class Group of an imaginary quadratic field with odd order
is cyclic is 97%.

In Chapter 4 we deal with the problem to build an efficient algorithm
which, given a discriminant D as input, finds the Class Number h(D) and
the structure of the Class Group Cl(D). We studied with more details the
algorithm found by Shanks in 1968 because it was the first efficient method
found and a lot of the subsequent work is based on similar ideas or they are
its improvements. At first we explain that we can describe the structure of
an abelian finite group G, by an algorithm, using the so-called invariants,
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that is integers d1, . . . dn such that di divides di+1 for i = 1, . . . , n and G is
isomorphic to the group Z/d1Z⊕ Z/d2Z⊕ . . . Z/dnZ, from the fundamental
classification theorem of finitely generated abelian groups.
The first algorithm which we study is very immediate but not much efficient.
It is based on the definition of the Class Number given in the first chapter,
that is it count, given a discriminant D, the number of the classes of quadratic
forms with such a discriminant counting the number of reduced forms. We
show that the complexity of this algorithm is O(|D|), this means that for
large discriminants the algorithm is very slow.
The second method which we analise is based on the analythic formulas of
h(D) and, although it is not very efficient, we study it because it represents
an interesting use of the functional equation of the L-series L(1, χ). Using
such equation we find, in fact, the following formula for h(D), when D < −4

is a fundamental discriminant,

h(D) =
∑
n≥1

(
D

n

)(
erfc

(
n

√
π

|D|

)
+
|D|
nπ

e−
πn2

|D|

)
where

erfc =
2√
π

∫ ∞

x

e−t2dt

is the called Error Complementary Function. Using this formula we can build
an algorithm with running time O

(
|D|1/2+ε

)
∀ε > 0.

We remark that these methods compute only the Class Number and do not
give information about the Class Group. So the main part of the chapter is
about the study of Shanks’s algorithm, called Baby Steps Giant Steps, which
firstly is a method to compute the order of an element g in an abelian finite
group G. Furthermore it can be modified to obtain the order of a group and
its invariants and can be used to find the Class Number and the invariants
of the Class Group.
At first we give a description and a pesudocode for the original Shanks’s al-
gorithm which computes the order of an element g, when we know at least an
upper bound B of it. The idea is the following. Set q =

⌈√
B
⌉
, we compute

powers of the element g, in particular gr with 0 ≤ r < q (baby steps) and
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g−aq with 0 ≤ a < q (giant steps), to obtain a multiple (precisely aq + r)
of the order of g; then the order is obtained by factorization. We find that
the computational cost of this method, using an efficient sorting algorithm,
is O (q log q).
Then we describe the theory used to represent the group G in order to modify
the previous algorithm to obtain the order of G, given an upper bound of it,
and its invariants. All is based on a representation of the group via gener-
ators and relations. So the problem becomes that of finding, at every steps
of the algorithm, a relation between the elements g1, . . . , gr of the group,
chosen in a random way, and this is equivalent to find integers (ρ1, . . . , ρr)

such that
∏r

i=1 gρi

i = 1; in this way we obtain, at every steps, the columns of
a matrix, called relation matrix. The invariants are obtained computing the
Smith Normal Form of the relation matrix, that is applyng to this matrix an
efficient algorithm which transform it in a diagonal matrix diag(d1, . . . , dn)

such that for i = 1, . . . , n, di|di+1 and the invariants of G are the di’s. So
we explain how obtain the relations between the elements by the Baby Steps
Giant Steps method described above and we remark the importance of know-
ing an upper bound of the order of the group to give a criterion to stop the
algorithm.
Also in this case we give a pesudocode of the algorithm and a description of
the tecnique used to obtain the columns of the relation matrix, storing the
exponents of the elements found at every steps in particular lists of lists.
Then we explain how use this algorithm for the Class Group. The main
questions are how to compute in Cl(D) and how obtain an upper bound for
h(D).
The first probem is solved using an operation between reduced forms, said
composition, which was introduced by Gauss in 1798. In particular we give
the pseudocode of the algorithm which, given a form, computes the reduced
equivalent form and the pseudocode of one which computes the composition
of two given forms.
Un upper bound for h(D) is found using again Analytic Number Theory; in
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particular the Euler products and the properties of Dirichlet’s Characters.
Such upper bound, under the assumption of the Generalized Riemann Hy-
pothesis (i.e. the Riemann Hypothesis for the functions L(s, χ)), is given,
when P →∞, by

h(D)− h̃ = O(h̃P−1/2 log(P |D|)),

where

h̃ =

√|D|
π

∏
l≤P

(
1−

(
D
l

)
l

)−1
 .

At this point , having all the information, we give the pseudocode of Shanks’s
algorithm applied to the Class Group and we estimate its running time by
O
(
|D|1/4 log2(|D|1/4)

)
.

The last part of the chapter is about the description of other algorithms more
efficient and to a rapid discussion of some of the most important results
obtained until now. We describe the so-called sub-exponential algorithm
of Mc Curley and Atkin, which uses a strategy similar to that of Shanks’s
method but, at every iterations, computes multiples of the Class Number
instead of divisors. Its running time is O

(
L(|D|)

√
9/8
)

where L(x) is the
function defined as

L(x) = e
√

log x log log x.

Then we deal with the last improvements of the discussed algorithm; in par-
ticular we discuss a recent paper by M. J. Jacobson, Jr., S. Ramachandran
and H. C. Williams [26], 2006. This work has been sent us, by e-mail, by
Williams and will be discussed in the Proceedings of the 7th Algorithm Num-
ber Theory Symposium (ANTS VII) at the end of July. In it the authors
describe the tecniques used to compute, by a O(|d|1/4) algorithm, the Class
Number and the Class Group Structure of all imaginary quadratic fields with
discriminant d for 0 < |d| < 1011.

xv



Chapter 1

Quadratic forms and Class

Number

In this chapter we are going to analize in short the theory of binary quadratic
forms, that are expressions of the form ax2 + bxy + cy2, where a, b, c ∈ Z.
In particular we are going to define the discriminant of a form and to deal
with the problem of determining the so-called Class Number for quadratic
forms with fixed discriminant d and its connection with Dirichlet L-series
L(s, χ) (in particular with L(1, χ)), where χ stands for a primitive real char-
acter.
In 1832 Jacobi conjectured a Class Number formula and lately, in 1839,
Dirichlet the same proved it and used it to finish the proof of the existence
of infinitely many primes in a given arithmetic progression.

1.1 Forms and discriminants

Definition 1.1. Given a,b, c ∈ Z then F (x, y) = ax2 + bxy + cy2 is said a
binary quadratic form. We will denote it as F = {a, b, c}.
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The discriminant of the form ax2 +bxy+cy2 is the number d = b2−4ac

where d is not a perfect square, since in this case the form has rational linear
factors. We always have d ≡ 0 or 1(mod4).
Given d is always possible to find at least one form with such discriminant:

F =


{
1, 0,−d

4

}
if d ≡ 0(mod4){

1, 1,−d−1
4

}
if d ≡ 1(mod4)

.

This form is called the principal form.
Moreover we always have 4aF = (2ax + by)2 − dy2.

If we have F (x, y) = k for a form F and an integer k, we say that F repre-
sents k. Now we will ask with the following question: can we establish the
sign of the integers represented by a form F with discriminant d?
We have the following theorem:

Theorem 1.1. If d > 0, for suitable (x, y), F represents both positive and
negative numbers (indefinite form); if d < 0 and a > 0, F represents no
negative numbers and 0 ⇐⇒ x = y = 0 (positive definite form); if d < 0

and a < 0, F represents no positive numbers and 0 ⇐⇒ x = y = 0 (negative
definite form).

Remark 1.1. That theorem has the following geometric interpretation : if
d > 0 and k > 0 or k < 0, F = k is an hyperbola; if d > 0, F = 0

represents a pair of straight lines, precisely the pair of asymptotes belonging
to all hyperbolas F = k for k 6= 0; if d < 0, F = k is an ellipse when ka > 0,
a so-called imaginary pair of lines when k = 0, an imaginary ellipse when
ka < 0.

Proof. 1) Let F be a form with d > 0. We have F (1, 0) = a, F (b,−2a) =

ab2 − 2b2a + c4a2 = a(4ac − b2) = −da and of these two numbers, one is
positive and the other is negative;
2) if d < 0, since 4aF = (2ax + by)2 − dy2, we have aF > 0 except when

2



x = y = 0. So F has the same sign as a because, if aF ≤ 0, we have that
2ax + by = 0, y = 0 and finally x = 0.

1.2 Equivalence of forms and Class Number

In the set of all quadratic forms we can define a relation as follows:

Definition 1.2. A form F = {a, b, c} is said to be equivalent to G =

{a1, b1, c1}, F ∼ G, if there are r, s, t and u ∈ Z, for which ru − st = 1,
such that

x = rX + sY, y = tX + uY

and F (X, Y ) = G(x, y).
We say that F goes into G under the transformation(

r s

t u

)
.

Remark 1.2. We remark that if F has discriminant d, then G also has this
discriminant and equivalent forms represents the same numbers. Moreover
we can obtain the following relations:

a1 = ar2 + brt + ct2;

b1 = 2ars + b(ru + st) + 2ctu;

c1 = as2 + bsu + cu2.

The previous defined relation is an equivalence one, that means it is reflex-
ive, symmetric and transitive; so it is possible to split the set of all quadratic
forms into equivalence classes. Now, given a discriminant d, we will ask about
the number of equivalence classes of forms with such discriminant; this num-
ber is said Class Number.
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1.3 Finiteness of the Class Number

A first result concerns the finiteness of the Class Number. It derives from
the following theorem proved by Lagrange. More details can be found in the
book of E. Landau [28].

Theorem 1.2. Every class contains a form F = {a, b, c} for which |b| ≤
|a| ≤ |c|. This form is called reduced form.

Proof. Let {a0, b0, c0} be a form belonging to a fixed class and let a be the
smallest number in absolute value, a 6= 0, which is representable by such
form. So we have, for suitable r and t, a = a0r

2 + b0rt+ c0t
2 where (r, t) = 1,

otherwise a
(r,t)2

would already be representable by the form {a0, b0, c0} but it
would be smaller in absolute value than a.
Then, since the previous remark, we can find two numbers s and u such that

ru− st = 1 and the transformation

(
r s

t u

)
takes {a0, b0, c0} into

{
a, b

′
, c

′}.
The transformation

(
1 h

0 1

)
(where h is arbitrary) takes

{
a, b

′
, c

′} into {a, b, c}

where b = 2ah + b
′ and, for suitable h , it follows that |b| ≤ |a|.

Finally, since c 6= 0 and since it can be represented by {a, b, c} (with x = 0 and
y = 1), we have, from previous remark and the minimality of |a|, |a| ≤ |c|.

From Theorem 1.2, we deduce:

Theorem 1.3. For every fixed d, the Class Number is finite.

Proof. 1)If d > 0, from the previous theorem, we have that in every class we
can select a form, {a, b, c}, such that |ac| ≥ b2 = d + 4ac > 4ac; then ac < 0

and 4a2 ≤ 4|ac| = −4ac = d− b2 ≤ d ⇒ |a| ≤
√

d/2 ⇒ |b| ≤ |a| ≤
√

d/2.
It follows that the possible values of a and b are finite and therefore so those
of c = b2−d

4a
.
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2)if d < 0, since a > 0 and c > 0, we have |b| ≤ a ≤ c; then 4a2 ≤ 4ac =

−d + b2 ≤ |d|+ a2 ⇒ |b| ≤ a ≤
√
|d|/3.

Even in this case the possible values of c are finite .

1.4 Primitive forms and proper representations

Now let us give some definitions about some particular quadratic forms and
representations:

Definition 1.3. A form F = {a, b, c} is called primitive if the Greatest
Common Divisor (a, b, c) = 1; otherwise it is called imprimitive.

We can state the following theorem about imprimitive forms without
proof [27]:

Theorem 1.4. If F is imprimitive, so that (a, b, c) = g > 1, then g2 divides
d and

{
a
g
, b

g
, c

g

}
is a primitive form of discriminant d

g2 and conversely.

So we realize that we can obtain all the classes with discriminant d from
all the primitives one with a discriminant of the form d

g2 , where g > 0 and
g2 divides d, multiplying every class by g.

Definition 1.4. Let k 6= 0. F (x, y) = k is said to be a proper represen-

tation of k by F if (x, y) = 1. If (x, y) > 1, F is said to be an improper
representation.

An important result on proprer representations is that we can choose some
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positive number represented properly by the form and any such number oc-
curs as the first coefficients of equivalent forms. So we have the following
theorem:

Theorem 1.5. Let k > 0 and let F (x, y) = k be a proper representation.
We can choose in exactly one way r, s and l such that xs − ry = 1, with
l2 ≡ d(mod4k) and 0 ≤ l < 2k; moreover F goes into {k, l, m} by the

transformation

(
x r

y s

)
where m is obtained by l2 − 4km = d.

Remark 1.3. It is important to notice the fact that a fixed number l, belong-
ing to [0, 2k), is associated to every proper representation .

Proof. A solution of xs− ry = 1 is of the form r = r0 + hx, s = s0 + hy.
If F = {a, b, c} and, {k, l, m} represents the new form, it follows, from Re-
mark 1.2, that l = 2axr + b(xs + yr) + 2cys = l0 + 2hk; hence, for suitable
h, we have 0 ≤ l < 2k.
From l2 − 4km = d comes out l2 ≡ d(mod4k).

Now we determine the number and the nature of the transformations
which take a form F = {a, b, c} into itself:

Theorem 1.6. All transformations of F = {a, b, c} into itself are given by(
t−bu

2
−cu

au t+bu
2

)
where (t, u) is a solution of Pell’s equation1

t2 − du2 = 4 (1.1)
1If (x0, y0) is that solution for which y0 has the smallest positive value and x0 > 0, if

ε = x0+y0
√

d
2 , then the general solution (x, y) is given by the formulas ±εn = x+y

√
d

2 where
n ∈ Z.
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Remark 1.4. The trivial transformations(
1 0

0 1

)
and (

−1 0

0 −1

)
are given by the trivial solutions of equation (1.1): (±2, 0).

Proof. 1) In order to prove that every transformation defined in the theorem
takes F into itself, it suffices to show that it leaves the first two coefficients
of F unaltered. We have, in fact,

a1 = a

(
t− bu

2

)2

+ b

(
t− bu

2

)
au + ca2u2

= a
t2

4
− ab

tu

2
+ ab2u2

4
+ ab

tu

2
− ab2u2

2
+ a2cu2

=
a

4

(
t2 − (b2 − 4ac)u2

)
= a,

(1.2)

b1 = −2a
t− bu

2
cu + b

(
1− 2acu2

)
+ 2cau

t + bu

2

= −actu + abcu2 + b− 2abcu2 + actu + abcu2 = b.

(1.3)

2)In order to show that every transformation

(
r s

m n

)
such that rn −

sm = 1 and which takes F into itself is of the form of Theorem 1.6, we
remark at first that

a = ar2 + brm + cm2 (1.4)

b = 2ars + b(1 + 2sm) + 2cmn (1.5)

and, from (1.5), it follows that

0 = ars + bsm + cmn. (1.6)
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By multiplying (1.4) by s and by replacing (1.6) into it, we have

as = cm(sm− rn) = −cm (1.7)

and , by multiplying (1.4) by n, we have

a(n− r) = bm. (1.8)

From these equations it follows that: a divides cm and a divides bm; but
(a, b, c) = 1, then we have also a divides m. It means that exists u such that
m = au.
From ( 1.7) and ( 1.8), we obtain s = −cu and n− r = bu; so we can write:

(n + r)2 = (n− r)2 + 4nr = b2u2 + 4(1 + sm)

= b2u2 + 4(1− acu2) = du2 + 4.
(1.9)

If we choose n + r = t, it follows that

t2 − du2 = 4

and
r =

t− bu

2
, n =

t + bu

2
.

Let us introduce another fundamental concept, the one of primary rep-

resentation:

Definition 1.5. A representation of k > 0 by a form F = {a, b, c} where
a > 0 is said primary if one of the two following conditions is verified :

1. d < 0;

2. d > 0, provided that 2ax + (b−
√

d)y > 0, and 1 ≤ 2ax+(b+
√

d)y

2ax+(b−
√

d)y
< ε2
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(ε = t0+u0

√
d

2
; ε > 1 where (t0, u0) is the smallest positive solution of Pell’s

equation, as defined in the footnote 1).

Remark 1.5.

1. If we set 2ax + (b +
√

d)y = L and 2ax + (b−
√

d)y = L, in the point 2
of the definition 1.5, then we can write L > 0, 1 ≤ L

L
< ε2 and we have

L ≥ L > 0.

2. if a representation of k by a form {a, b, c} is primary and improper ,
and if (x, y) = g, it follows that k

g2 has a proper primary representation
by {a, b, c} where x

g
and y

g
are used in place of x and y, and conversely.

Given a number k, how many are its primary representations?
The following theorem will have as a consequence that the number of the
primary representations of k is anyway finite.

Theorem 1.7. If k > 0 has a proper representation by a form F = {a, b, c}
where a > 0, then for every l such that l2 ≡ d(mod4k), where 0 ≤ l < 2k, as
defined in Theorem 1.5, there exist exactly w primary proper representations
of k where

w =



1 se d > 0

2 se d < −4

4 se d = −4

6 se d = −3

Proof. : Since l2 ≡ d(mod4k), we have that there is exactly one value m

such that l2−4km = d and, from Theorem 1.5, there exists at least one trans-

formation

(
x0 r0

y0 s0

)
that takes the form F = {a, b, c} into G = {k, l, m}.
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We are interested in all the transformations

(
x r

y s

)
and we wish to prove

that the first column of this matrix is formed by w pairs of values x and y,
in every case if d < 0 and, provided the conditions of Defintion 1.5 , if d > 0.

Let

(
x1 r1

y1 s1

)
be a general transformation that fixes F , we can prove that

(
x r

y s

)
=

(
x1x0 + r1y0 x1r0 + r1s0

y1x0 + s1y0 y1r0 + s1s0

)
. (1.10)

The matrix on the right side takes F into G because of the transitivity
of the previous defined relation in the set of quadratic forms; in fact, if we
take F into G by means of this matrix, or, if we first transform F by means

of

(
x1 r1

y1 s1

)
and then the new form by means of

(
x0 r0

y0 s0

)
, we obtain the

same result. Moreover, thanks to the symmetric property, if F goes into G

by means of

(
x0 r0

y0 s0

)
, G goes into F by means of

(
s0 −r0

−y0 x0

)
.

According to the result above, the transformation

(
xs0 − ry0 −xr0 + rx0

ys0 − sy0 −yr0 + sx0

)
takes F into F .

We can set this transformation equal to

(
x1 r1

y1 s1

)
i.e., comparing the ele-

ments of the matrices, we obtain

x = x1x0 + r1y0, r = x1r0 + r1s0,

y = y1x0 + s1y0, s = y1r0 + s1s0

and so the prove of (1.10). From Theorem 1.6, we have that all the transfor-
mations which take F into itself are represented by matrices of the form(

t−bu
2

−cu

au t+bu
2

)
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where (t, u) solutions of (1.1), so x and y are given by
x = t−bu

2
x0 − cuy0

y = aux0 + t+bu
2

y0

where distinct pairs (t, u) correspond to distinct pairs (x, y).
The determinant of the coefficients of t and u is

1

4

∣∣∣∣∣x0 −(bx0 + 2cy0)

y0 2ax0 + by0

∣∣∣∣∣ =
1

4
(2ax2

0 + 2bx0y0 + 2cy2
0) =

k

2
6= 0.

So, for d < 0, since the equation (1.1) has w solutions, the theorem has been
proved.
For d > 0 we have to show that for every fixed pair (t, u), that is for one sign
and one exponent in the formula

t + u
√

d

2
= ±εn,

we have
L > 0, 1 ≤ L

L
< ε2, (1.11)

where x and y defined above.
From the expressions found for x and y, it follows that :
4ax+2(b+

√
d)y = 2a(t−bu)x0−4acuy0 +2abux0 +(t+bu)by0 +

√
d(2aux0 +

(t + bu)y0) = t(2ax0 + by0) + duy0 +
√

d(2aux0 + buy0 + ty0) = (2ax0 + (b +
√

d)y0)(t + u
√

d);

and so

2ax +
(
b +

√
d
)

y =
(
2ax0 + (b +

√
d)y0

) t + u
√

d

2
.

If we set
L0 = 2ax0 + (b +

√
d)y0,

we obtain
L = ±L0ε

n.
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Since L > 0, it results
L = |L0|εn

and so it needs to show that exists exactly one value of n in this equation
such that (1.11) holds.
By the definition of discriminant, it follows that

4ak = (2ax + (b +
√

d)y)(2ax + (b−
√

d)y) = LL;

and, since L > 0, it has to be L = (4ak)/L > 0.

Moreover
L

L
=

L2

4ak
=
|L0|2ε2n

4ak

and so precisely we have

1 ≤ |L0|2ε2n

4ak
< ε2.

This is equivalent to
2
√

ak

|L0|
≤ εn <

2
√

akε

|L0|
and so we have these inequalities for exactly one value of n.

Remark 1.6. The finiteness of the number of the primary representations
of k comes out the possibility to have just a finite number of l.

1.5 Representative system of forms and Class

Number Formula

The following theorems allow us to proof the Class Number formula. They
will be stated for representative system of the classes of forms. So let us
give the following defintion:
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Definition 1.6. A representive system of the classes of forms with discrim-
inant d (where, if d < 0, we take a > 0) is a set of representatives, one for
each class, having a > 0.

Theorem 1.8. If k > 0 and (k, d) = 1, the number Ψ(k) of primary repre-
sentations of k by all the forms belonging to a representative system is finite
and it has this value :

Ψ(k) = w
∑
n|k

(
d

n

)
(1.12)

Proof. Let us at first consider the case of the proper primary representa-
tions. From a theorem of Number Theory 2 follows that the congruence
l2 ≡ d(mod4k), with 0 ≤ l < 2k, has exactly

∑
f |k(

f
n
) solutions where f is a

square-free divisor of k and ( f
n
) is the Jacobi symbol ; for every l we obtain,

from Theorem 1.5, a form {k, l, m} equivalent to exactly one form of the rep-
resentative system and, by means of this form, we obtain exactly w proper
primary representations of k belonging to l. It follows that the number of
proper primary representations of k by forms belonging to the representative
system is :

Ψ(k) = w
∑
f |k

(
d

f

)

By the second point of Remark 1.5, it follows that, if (d, k) = g, the number of
primary representations of k by forms belonging to the representative system
is :

Ψ(k) = w
∑
g2|k
g>0

∑
f | k

g2

(
d

f

)
.

2Let k > 0 and let (d, k) = 1. The number of solutions of the congruence x2 ≡
d(mod4k) is 2

∑
f |k( d

f ) where f is a square-free positive divisor of k . Remarking that,
whenever x0 satisfies the congruence, so does x0 + 2k, in the interval [0, 2k) there are∑

f |k( d
f ) solutions.
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Since (d, g2) = 1, by another theorem of Number Theory 3, follows that

Ψ(k) = w
∑
g2|k
g>0

∑
f | k

g2

(
d

fg2

)
= w

∑
n|k

(
d

n

)

because every n > 0 can be uniquely written in the form fg2 where f is
square-free and g > 0; it follows that, if n divides k, then g2 divides k and f

divides k
g2 and conversely.

Now we are going to consider the mean value of Ψ(k), as k varies, to obtain
finally a relation with the L-function L(1, χ), where χ is a primitive real
character. Therefore we have the following theorem:

Theorem 1.9. If, for τ > 1, we set

H(τ) =
∑

1≤k≤τ
(k,d)=1

Ψ(k),

then
lim

τ→∞

H(τ)

τ

exists, and we have

lim
τ→∞

H(τ)

τ
= w

ϕ(|d|)
|d|

∞∑
n=1

(
d

n

)(
1

n

)
.

Remark 1.7. H(τ) represents the number of primary representations, by
forms belonging to the representative system, of all of the natural numbers
up to τ that are relatively prime to d.

3If m1 > 0 e m2 > 0, then
(

d
m1m2

)
=
(

d
m1

)(
d

m2

)
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Proof. Since ( d
n
) is a nonprincipal primitive real character mod|d|,

∞∑
n=1

(
d

n

)(
1

n

)
converges.
From Theorem 1.8, since, if n divides k and n > 0, we can write

(
d

n

)(
d
k
n

)2

=


(

d
n

)
(k, d) = 1

0 (k, d) > 1
,

it follows that

H(τ)

w
=
∑

1≤k≤τ
(k,d)=1

∑
n|k

(
d

n

)
=
∑

1≤k≤τ

∑
n|k

(
d

n

)(
d
k
n

)2

.

Taking n ≥ 1 and m ≥ 1, therefore we have

H(τ)

w
=
∑

nm≤τ

(
d

n

)(
d

m

)2

.

Now, in order to separate the sum, we also remark that if nm ≤ τ , then
either n ≤

√
τ , and so we have m ≤ τ

n
; or else n >

√
τ , so that we have

m ≤
√

τ and
√

τ < n ≤ τ
m

.

We obtain:

H(τ)

w
=
∑

n≤
√

τ

(
d

n

)∑
m≤ τ

n

(
d

m

)2

+
∑

m≤
√

τ

(
d

m

)2 ∑
√

τ<n≤ τ
m

(
d

n

)
. (1.13)

Taking ξ = τ
n
, ∑

m≤ξ

(
d

m

)2

represents the number of positive integers up to ξ that are relatively prime
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to d and results4 : ∣∣∣∣∣∑
m≤ξ

(
d

m

)2

− ϕ(|d|)
|d|

ξ

∣∣∣∣∣ < ϕ(|d|) ≤ |d|. (1.14)

Moreover, since
(

d
n

)
is a non-principal character mod(|d|), from the ortogo-

nality laws of the characters, it follows that∣∣∣∣∣∣
∑

√
τ<n≤ τ

m

(
d

n

)∣∣∣∣∣∣ ≤ ϕ(|d|)
2

< |d|. (1.15)

We remark also that, once more from the properties of the characters,∑
m≤

√
τ

(
d

m

)2 ∑
√

τ<n≤ τ
m

(
d

n

)
= O(

√
τ).

From this remark and by the previous equations , it follows that:

H(τ)

w
= τ

ϕ(|d|)
|d|

∑
n≤

√
τ

(
d

n

)
1

n
+ O(

√
τ)

and, as τ →∞, we obtain

lim
τ→∞

H(τ)

τ
= w

ϕ(|d|)
|d|

∞∑
n=1

1

n

(
d

n

)
.

But
∑∞

n=1
1
n
( d

n
) = L(1, χ), and so:

lim
τ→∞

H(τ)

τ
= w

ϕ(|d|)
|d|

L(1, χ).

Now, let τ > 1, we consider :

H(τ, F ) =
∑

1≤k≤τ
(k,d)=1

Ψ(k, F ) (1.16)

4Let d > 0 and ξ > 0. Then the number of positive numbers n ≤ ξ which belong to
any given residue class mod d differs from ξ

d by less then 1.
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where Ψ(k, F ) is the number of primary representations of k by a form F of
the representative system. We are going to calculate :

lim
τ→∞

H(τ, F )

τ
.

In order to do it, we state and proof two theorems.

Theorem 1.10. If x and y belong to a complete set of residues mod |d|,
then exactly |d|ϕ(|d|) of the d2 numbers F (x, y), which result, are relatively
prime to d.

Proof. : at first we consider a prime p such that pl|d with l > 0. In this case
it suffices to show that if x and y belong to a complete set of residues mod

pl, then p does not divide F (x, y) exactly plϕ(pl) times.
Then we consider |d| =

∏
p||d| p

l and, since (F, d) = 1 is equivalent to p 6 |F ,
for all p which divides |d|, there are exaclty∏

p||d|

plϕ(pl) = |d|ϕ(|d|)

pairs of classes x ≡ x0(mod|d|), y ≡ y0(mod|d|).
We remark that, since (a, b, c) = 1 and b2 − 4ac = d, if p|d we cannot have
both p|a and p|c. Let, for example, p 6 |a. We distinguish two cases:

1. let p > 2; we have (p, 4a) = 1 and, since p|d and 4aF = (2ax+by)2−dy2,
it must be 2ax + by 6≡ 0(modp) to have p 6 |F.

Since p 6 |2a and, for each of our pl possibile values for y, all of the x

belonging to a certain set of p−1 residue classes (modp) have the pre-
vious property, we have exactly pl−1(p−1) = ϕ(pl) possible values for x.

2. Let p = 2, so that 2|d and 2|b. The condition p 6 |F is equivalent to :

ax2 + bxy + cy2 ≡ 1(mod2)

17



and this implies:
x + cy ≡ 1(mod2).

For each of our 2l possible values for y, all of the x belonging to one
residue class mod 2 have this property and they have exactly 2l−1 =

ϕ(2l) possibile values.

Theorem 1.11. Let m > 0. We consider an ellipse or a sector of an hy-
perbola ( the curvilinear triangle bounded by an arc of the hyperbola and two
rays drawn from its endpoints to the center of the hiperbola); let I denote its
area. Instead to consider the original set of points (ξ, η) , we consider that
of points (ξ

√
τ , η

√
τ).

Let U(τ) be the number of points with integral coordinates within the extended
figure (which each boundary point counted or not) which satisfy the additional
conditions:

x ≡ x0(modm), y ≡ y0(modm).

Then we have
lim

τ→∞

U(τ)

τ
=

I

m2

Proof. : in the plane of the original figure, let us lay out two mutually
perpendicular systems of parallel lines, spaced m√

τ
units apart, around the

point ξ = x0√
τ
, η = y0√

τ
; the equations of these straight lines are:

ξ =
x0 + rm√

τ
, η =

y0 + sm√
τ

.

Let W (τ) be the number of squares in this net which are contained in the
ellipse or in the sector of the hyperbola. We have :

U(τ) = W (τ).

18



Since m2

τ
is the area of each square of the net , it follows :

I =

∫ ∫
dξdη = lim

τ→∞

(
m2

τ
W (τ)

)
and this proves the theorem.

Now we can state and prove the following result:

Theorem 1.12. Given H(τ, F ) defined in (1.16), then

lim
τ→∞

H(τ, F )

τ
=


2π√
|d|

ϕ(|d|)
|d| if d < 0

log ε√
d

ϕ(d)
d

if d > 0

where ε = t0+u0

√
d

2
, as in Definition 1.5.

Proof. Let us consider two cases.

1. Let d < 0. Since in this case all the representations are primary,
H(τ, F ) is given by the number of (x, y) such that

0 < ax2 + bxy + cy2 ≤ τ, (ax2 + bxy + cy2, d) = 1.

From Theorem 1.10, the second condition is satisfied by ϕ(|d|)|d| pairs
(x, y) of residues mod|d|; from the first condition the points (x, y) be-
long to an ellipse with center in the origin which expands as τ →∞.
The area of such ellipse is 2π

|d|
1
2
τ and, from Theorem 1.11, when τ →∞,

the number of points with integral coordinates, within it, is asymptotic
to

1

|d|2
2π

|d| 12
τ.

So, in this case, we obtain :

lim
τ→∞

H(τ, F )

τ
=

2π√
|d|

ϕ(|d|)
|d|

.
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2. Let d > 0; we take

Λ = 2ax + (b +
√

d)y, Λ = 2ax + (b−
√

d)y.

The pairs (x, y) satisfy the following conditions:

0 < ax2 + bxy + cy2 ≤ τ, (ax2 + bxy + cy2, d) = 1

Λ > 0, 1 ≤ Λ

Λ
< ε2.

So in this case, the points (x, y) with integral coordinates belong to the
sector of the hyperbola

ax2 + bxy + cy2 ≤ 1, Λ > 0, 1 ≤ Λ

Λ
< ε2 (1.17)

of which we are going to compute the area.
The area is given by

I =

∫ ∫
dxdy

over the region
ΛΛ ≤ 4a, Λ > 0, 1 ≤ Λ

Λ
< ε2.

Let
ρ =

Λ

2
√

a
, σ =

Λ

2
√

a

be chosen as new variables; we have∣∣∣∣∣ ∂ρ
∂ξ

∂ρ
∂η

∂σ
∂ξ

∂σ
∂η

∣∣∣∣∣ =
1

2
√

a

1

2
√

a

∣∣∣∣∣2a b +
√

d

2a b−
√

d

∣∣∣∣∣ = −
√

d.

So the integral becomes:

I =
1√
d

∫ ∫
dρdσ,

over the region
ρσ ≤ 1, σ ≥ 0, σ ≤ ρ ≤ ε2σ,
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that is the sector of the hyperbola having the vertices (0, 0); (ε, 1
ε
); (1, 1).

It follows

√
dI =

∫ ε

0

dρ

∫ Min(ρ, 1
ρ
)

ρ

ε2

dσ =

∫ 1

0

dρ

∫ ρ

ρ

ε2

dσ +

∫ ε

1

dρ

∫ 1
ρ

ρ

ε2

dσ

=

∫ 1

0

(ρ− ρ

ε2
)dρ +

∫ ε

1

(
1

ρ
− ρ

ε2
)dρ =

∫ 1

0

ρdρ +

∫ ε

1

dρ

ρ

−
∫ ε

0

ρ

ε2
dρ = log ε.

(1.18)

The previous result allows us to state the following theorem that gives
a clear expression of the class-number and so it represents the fundamental
result of this chapter:

Theorem 1.13.

h(d) =


w
√
|d|

2π
L(1, χ) if d < 0

√
d

log ε
L(1, χ) if d > 0

Remark 1.8. If we denote as Fn the forms belonging to a representative
system, we have

h∑
n=1

H(τ, Fn) = H(τ)

and, from Theorem 1.9,

h(d) lim
τ→∞

H(τ, F )

τ
= w

ϕ(|d|)
|d|

L(1, χ).

Proof. 1. if d < 0, from Theorem 1.12, we have

lim
τ→∞

H(τ, F )

τ
=

2π√
|d|

ϕ(|d|)
|d|

.

So
h(d)

2π√
|d|

ϕ(|d|)
|d|

= w
ϕ(|d|)
|d|

L(1, χ)
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and

h(d) =
L(1, χ)w

√
|d|

2π

2. if d > 0, we obtain

lim
τ→∞

H(τ, F )

τ
=

log ε√
d

ϕ(d)

d
.

So
h(d)

log ε√
d

ϕ(d)

d
= w

ϕ(|d|)
|d|

L(1, χ)

and, since in this case w = 1, we have

h(d) =

√
d

log ε
L(1, χ).

We have just obtained the famous Class Number formula found by Dirich-
let. From it we can deduce that the L-function L(1, χ) is strictly positive and
so different from zero. That allows Dirichlet himself to complete the proof of
the theorem of the existence of infinitely many primes in a given arithmetic
progression.

1.6 L-functions as a finite sum

Making use of the results proved until now, we will express L(1, χ) as a finite
sum. It needs to use an expression like a Gauss’sum

|d|∑
m=1

(
d

m

)
eq(mn) =

(
d

n

)
ε|d|

1
2

where eq(x) = e2πix/q and

ε =

1 if d < 0

i if d > 0
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and the following result from the classical theory of Fourier series:

if 0 < ϕ < 2π

∞∑
n=1

sin(nϕ)

n
=

π

2
− ϕ

2

and

∞∑
n=1

cos(nϕ)

n
= − lg

(
2 sin

ϕ

2

)
.

Moreover we have to give the definition of fundamental discriminant.

Definition 1.7. A discriminant D is called fundamental discriminant if D 6=
0, 1 and

D =

m if m ≡ 1(mod4)

4m if m ≡ 2, 3(mod4)

for some squarefree integer m.

Every discriminant d can be uniquely written as De2 with D fundamental
discriminant and e ≥ 1.

Remark 1.9. We remark that a fundamental discriminant has the property
that all the forms of that disciminants are primitive.

So we can state the following theorem:

Theorem 1.14. If d is a fundamental discriminant:

L(1, χ) =


− 1√

d

∑d−1
r=1

(
d
r

)
log(sin πr

d
) if d > 0

− π

|d|
3
2

∑|d|−1
r=1

(
d
r

)
r if d < 0
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Proof. Using the above-mentioned Gauss’sum, we can write

√
dL(1, χ) =

∞∑
n=1

(
d

n

)√
d

1

n

=
∞∑

n=1

1

n

|d|−1∑
r=1

(
d

r

)
e

2πinr
|d|

=

|d|−1∑
r=1

(
d

r

) ∞∑
n=1

1

n
e

2πinr
|d| .

(1.19)

If d > 0 the left-hand side is real, hence we have

√
dL(1, χ) =

d−1∑
r=1

(
d

r

) ∞∑
n=1

cos(n2πr
d

)

n

= −
d−1∑
r=1

(
d

r

)
lg
(
2 sin(

πr

d
)
)

= −
d−1∑
r=1

(
d

r

)
lg sin

(πr

d

)
;

(1.20)

if d < 0 the left-hand side is pure imaginary and so:

√
dL(1, χ) =

|d|−1∑
r=1

(
d

r

) ∞∑
n=1

sin
(

n2πr
|d|

)
n

=

|d|−1∑
r=1

(
d

r

)(
π

2
− πr

|d|

)

= − π

|d|

|d|−1∑
r=1

(
d

r

)
r.

(1.21)
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1.7 A particular case

Let q a prime such that d = −q with q ≡ 3( mod 4) and suppose q ≥ 3.
From the previous results , as d < 0, we have w = 2 and so

h(d) =
2|d| 12
2π

L(1, χ)

=
2|d| 12
2π

− π

|d| 32

|d|−1∑
n=1

(
d

n

)
n


= − 1

|d|

q−1∑
n=1

n

(
−q

n

)

= −1

q

q−1∑
n=1

n

(
n

q

)
(1.22)

We notice that the right-hand side, which we will denote by H, is integral
because it follows, from Euler’s rule, that

q−1∑
n=1

n

(
n

q

)
≡

q−1∑
n=1

n
q
2
+ 1

2 ≡ 0(modq).

H enjoys some important properties that were proved by Jacobi. Par-
ticullarly ∀p ≡ 1( mod q) there is a representation of p|H| in the form
4p|H| = x2 + qy2.

From the theory of quadratic forms we can deduce that h(−q) enjoys the
same properties as H and from this specific remark, Jacobi, examining a
particular number of cases, formulated the conjecture that h(−q) = |H|.
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Chapter 2

Class Group and Class Number

In this chapter we are showing the existence of a connection between the
theory of binary quadratic forms, which we studied in the previous chapter,
and the theory of ideals in quadratic fields. In particular we deal with the
problem of determine the Class Number Formula using the theory of
ideals.

2.1 Algebraic Number Theory background

Let us first recall some fundamental facts about algebraic number theory,
useful to define the Class Number.The complete theory can be found in
the book of Ian Stewart and David Tall [35].

2.1.1 Quadratic fields

A quadratic field is a number field of degree 2 over Q, that is to say a
subfield K of C such that [K : Q] = 2. More precisely quadratic fields are
fields of the form Q(

√
d), where d is a squarefree integer. Every element α

∈ Q(
√

d) can be expressed in the form α = a + b
√

d where a, b ∈ Q.
The ring of integers Od of Q(

√
d), for squarefree d, is the set of α ∈ Q(

√
d)

that are roots of a monic polynomial z2 + bz + c with b, c ∈ Z.
In particular it can be proved that the ring of integers of Q(

√
d) is:
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Od =

Z[
√

d] =
{

a + b
√

d : a, b ∈ Z
}

if d 6≡ 1(mod4)

Z
[

1+
√

d
2

]
=
{

a + b(1+
√

d
2

) : a, b ∈ Z
}

if d ≡ 1(mod4)

If K = Q(θ) is a number field of degree n, let {α1, . . . , αn} be a basis
of K as vector space of Q, we define the discriminant of this basis to
be ∆[α1, . . . , αn] = det[σi(αj)]

2, where σi are the distinct monomorphisms
σi : K −→ C, (i = 1, . . . , n) and σi(α) are called the conjugates of α. If α ∈ K

we define the norm Nk(α) :=
∏n

i=1 σi(α) and the trace Tk(α) :=
∑n

i=1 σi(α).
A basis of the ring of integers of a number field K is called an integral bases

for K. Every number field possesses an integral basis. The discriminant of
an integral basis is independent of the integral basis which we choose, so it
is called the discriminant of K.
If K = Q(

√
d) the monomorphisms are given by σ1(r + s

√
d) = r + s

√
d and

σ2(r + s
√

d) = r − s
√

d.
So for every α = r + s

√
d ∈ Q(

√
d) we can write the norm and the trace:

N(r + s
√

d) = r2 − ds2, T (r + s
√

d) = 2r.
If d 6≡ 1(mod4) then

{
1,
√

d
}

is an integral basis for Q(
√

d) (i.e. a basis of

the ring of integers) and so the discriminant of Q(
√

d) is 4d; if d ≡ 1(mod4)

then Q(
√

d) has an integral basis of the form
{

1, 1+
√

d
2

}
and so its discrimi-

nant is d.

2.1.2 Rings of integers and factorization into irreducibles.

Now we investigate some important properties of the ring of integers in a
number field K. At first we remark that Ok is a free abelian group of rank
n, where n = [Ok : Q], that is to say an abelian group with a basis of n

elements.
There are some easy ways of detecting units and irreducibles elements in the
ring of integers. Let x, y ∈ Ok. Then:
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1. x is a unit if and only if N(x) = ±1;

2. if x and y are associated then N(x) = ±N(y);

3. if N(x) is a prime, then x is irreducible in Ok.

In Ok the factorization into irreducibles is possible but not necessarily
unique. For example in Z(

√
−5) there are the following factorizations: 6 =

2 ·3 = (1+
√
−5)(1−

√
−5). We notice that there are no elements in Ok with

norm ±2 or ±3 since x2 + 5y2 = ±2 and x2 + 5y2 = ±3 have no solutions; so
2, 3, 1 +

√
−5 and 1−

√
−5 are all irreducible elements as their norms equal

4, 9, 6, 6 respectively. Moreover 2 is not associated of 1 +
√
−5 or 1−

√
−5,

so for 6 the factorization is not unique.
This example shows that sometimes Ok is not a unique factorization domain.
In particular we have that the ring of integers of a quadratic field Q(

√
d), for

negative squarefree d, is a UFD if and only if d takes one of the values:

−1,−2,−3,−7,−11,−19,−43,−67,−163.

This result was first conjectured by Gauss. In 1934, Heilbronn and Lin-
foot [25] proved that there are at most ten negative d for which the ring of
integers of Q(

√
d) is a UFD; nine such d were known (those described above)

and so the problem was whether there is a tenth such d. It was proved only
in 1966 by Baker [2] and in 1967 by Stark [33] independently that there is
no such tenth d.
If d > 0 we know that factorization is unique in many more cases, for istance

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41,

43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97, . . .

and so the situation is different and more complicated than the previous one.
In fact, according to a Conjecture of Gauss, unique factorization occurs
for infinitely many d > 0.
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2.1.3 Ideals in Ok

Ok is also a Dedekind ring. This means that it has the following properties:

1. it is a domain with field of fractions K;

2. it is Noetherian (i.e. every ideal in Ok is finitely generated);

3. it is integrally closed (i.e. if α ∈ K satisfies a monic polynomial equa-
tion with coefficients in Ok then α ∈ Ok);

4. it is 1-dimensional (i.e. every non-zero prime ideal of Ok is maximal1).

An Ok-submodule of K is a subgroup N of K such that if n ∈ N , k ∈ Ok,
then kn ∈ N . So an ideal may be described as an Ok-submodule of Ok.
We define a Z-basis as a linearly independent set which generates an abelian
group; every ideal I of OK with I 6= 0 has a Z-basis [α1, . . . , αn] where n is
the degree of K.
A fractional ideal F of Ok is a Ok-submodule such that there exists c ∈ Ok, c 6=
0 with cF ⊆ Ok. In particular an ideal I is also a fractional ideal and, F is a
fractional ideal of Ok if and only if F = d−1I, for some d 6= 0, d ∈ Ok and I

ideal of Ok. Moreover the non-zero fractionals ideals of Ok form an abelian
group under the multiplication.
We have the following fundamental property of the ideals of Ok which also
characterizes Dedekind domains:

Theorem 2.1. Every non-zero ideal of Ok can be written as a product of
prime ideals, uniquely up to the order of the factors.

Moreover in Ok, since it is a Dedekind domain, we can define the divisi-
bility of ideals in the following way:

1An ideal I of a domain R is maximal if I is a proper ideal of R and there are no ideals
of R strictly between I and R
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I/J ⇐⇒ I ⊇ J.

Now let us state a result that enable us to define the norm of ideals.

Proposition 2.1. If I is a non-zero ideal of Ok, then #(Ok/I) is finite.

Proof. Let α ∈ I, α 6= 0; we have αOk ⊆ I. So we can consider the following
surjective application:

Ok/αOk −→ Ok/I,

where
x + αOk −→ x + I

We will prove that #(Ok/αOk) is finite; this implies #(Ok/I) finite.
Let {ω1, . . . , ωn} be an integral basis of Ok, so we can write:

Ok = ω1Z + . . . ωnZ

and
αOk = αω1Z + ...αωnZ.

By properties of abelian free groups2 and of discriminants3 we have

#(Ok/αOk) =
√

∆(αω1, . . . , αωn)/∆(ω1, . . . , ωn) = |N(α)|

and this is finite.

2Let G a free abelian group of rank n and H a subgroup of G of equal rank; if G and
H have Z-bases x1, . . . , xn and y1, . . . , yn with yi =

∑
j aijxj , then

#(G/H) = |det(aij |.

3If K = Q(θ) and {α1, . . . , αn}, {β1, . . . , βn} are bases of K with

βk =
n∑

i=1

cikαi

then
∆ [β1, . . . , βn] = [det(cij)]

2 ∆ [α1, . . . , αn]
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We define the norm of I to be: N(I) = #(Ok/I).
Properties of the norm of an ideal:

1. if {α1, ..., αn} is a Z-basis for I we have N(I) =
√

∆(α1,...,αn)
∆

where ∆

is the discriminant of K;

2. if I = 〈a〉 is a principal ideal then N(I) = |N(a)|;

3. if I and J are non-zero ideals of Ok, then N(IJ) = N(I)N(J);

4. if N(I) is a prime number, then I ⊆ Ok is a prime ideal;

5. for any m, there are only finitely many ideals of Ok with norm m.

2.2 The Class Group

In this section we will define the Class Number of a number field .
Let F(Ok) = {F |F fractional ideals of Ok} be the free group generated by
the fractional ideals of Ok and let P(Ok) = {zOk|z ∈ K, z 6= 0} be the sub-
group of F(Ok) generated by principal fractional ideals. We define the Class

Group of Ok to be the quotient group Cl(Ok) = F(Ok)
P(Ok)

and the Class Num-

ber to be its order. The Class Group measures the extent to which ideals
can be non principal, or how far Ok is from being a UFD.
In fact if D is a domain, then D is a PID if and only if D is a UFD and every
non-zero prime ideal of D is maximal. Since Ok is a Dedekind ring, Ok is a
UFD if and only if it is a PID.
Moreover, according to the definition, Ok is a PID if and only if every ideal
of Ok is principal, that means F(Ok) = P(Ok); this happens if and only if
|Cl(Ok)| = 1. So we have that Ok is a UFD if and only if the class-group has
order 1, or equivalently the class number h is equal to 1.
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2.2.1 Equivalence of ideals

Let Γ be the set of the ideals of Ok. We define on Γ this equivalence relation:
x,y ∈ Γ,x ∼ y ⇐⇒ ∃〈a〉, 〈b〉 principal ideals and x〈a〉 = y〈b〉. If N(ab) > 0

the ideals are said strictly equivalent and we also say that x and y are in
the same narrow ideal class.
Now let I, J be two fractional ideals, they are equivalent if I = αJ for
some nonzero element α of OK . We can define multiplication of equivalence
classes of fractional ideals by setting [I][J ] = [IJ ]; with this definition the
set of equivalence classes of fractional ideals forms an abelian multiplicative
group that is just Cl(Ok). For this reason it is called the Class Group.

2.2.2 Finiteness of the Class Number

The proof of the finiteness of the Class Number h is an application of a very
important theorem of 1896, due to Minkowski. Let us state Minkowski’s
theorem and its applications [36].

Minkowski’s Theorem

At first we define some geometric objects .

Definition 2.1. Let e1, . . . , em be a linearly indipendent set of vectors in
Rn.The additive subgroup of (Rn, +) generated by e1, . . . , em is called a lat-

tice of dimension m, generated by e1, . . . , em.

Definition 2.2. If L is a lattice generated by {e1, . . . , en} the fundamental

domain of L consists of all elements
∑

aiei (ai ∈ R) for which 0 ≤ ai < 1.

Definition 2.3. Let S denote the set of all complex numbers of modulus
1. The direct product of n copies of S is denoted by Tn and is called the
n-dimensional torus.4

4If L is an n-dimensional lattice in Rn then Rn/L is isomorphic to the n-dimensional
torus Tn .
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Theorem 2.2. (Minkowski’s theorem) Let L be an n-dimensional lattice in
Rn with fundamental domain T , and let X be a bounded symmetric convex5

subset of Rn. If
v(X)6 > 2nv(T )

then X contains a non-zero point of L.

The finiteness theorem

The following applications of Minkowski’s theorem enable us to prove the
finiteness of the class-number. We are going to prove only the results in
which we are more interested .

Lemma 2.1. If M is a lattice in Lst of dimension s + 2t having fundamen-
tal domain of volume V , and if c1, . . . , cs+t are positive real numbers whose
product

c1 . . . cs+t > (4/π)tV

then there exists in M a non-zero element

x = (x1, . . . , xs+t)

such that
|x1| < c1, . . . , |xs| < cs;

|xs+1|2 < cs+1, . . . , |xs+t|2 < cs+t.

Theorem 2.3. Let K be a number field of degree n = s + 2t with ring
of integers Ok, and let 0 6= I be an ideal of Ok. Then the volume of a

5A subset X ⊆ Rn is convex if whenever x, y ∈ X then all points on the straight line
segment joining x to y also lie in X.

6The volume v(X) of a subset X ⊆ Rn is defined as:∫
X

dx1 . . . dxn

where (x1, . . . , xn) are coordinates. The volume exists only when the integral does.
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fundamental domain for σ(I)7in ⊆ Lst := Rs × Ct is equal to

2−tN(I)
√
|∆|

where ∆ is the discriminant of K.

Corollary 2.1. If I 6= 0 is an ideal of Ok then I contains an integer α with

|N(α)| ≤ (2/π)tN(I)
√
|∆|

where ∆ is the discriminant of K.

Proof. We consider an arbitrary ε > 0, let c1, . . . , cs+t be positive real num-
bers with

c1. . . cs+t = (2/π)tN(I)
√
|∆|+ ε.

By Lemma 2.1 and Theorem 2.3 we obtain that exists α 6= 0 such that

|σ1(α)| < c1, . . . , |σs(α)| < cs,

|σs+1(α)|2 < cs+1, . . . , |σs+t(α)|2 < cs+t.

By multiplication of all these inequalities and by the multiplicative property
of the norm of elements, we have:

|N(α)| < c1 . . . cscs+1 . . . cs+t = (2/π)tN(I)
√
|∆|+ ε.

Now we call Aε the set of such α. Since a lattice is discrete, Aε is finite and
also Aε 6= ∅. So A =

⋂
ε Aε 6= ∅. If α ∈ A, then we have

|N(α)| ≤ (2/π)tN(I)
√
|∆|

7If α ∈ K = Q(θ), we can define a ring homomorphism σ : K −→ Lst by σ(α) =

(σ1(α), . . . , σs(α);σs+1(α), . . . , σs+t(α)), ∀α, β ∈ K where σi(α) for i = 1, . . . , s+ t are the
monomorphisms K −→ C
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Corollary 2.2. Every non-zero ideal I of Ok is equivalent to an ideal with
norm ≤ (2/π)t

√
|∆|.

Proof. If we consider I−1 we have that the class of fractional ideals equivalent
to I−1 contains an ideal J and IJ is equivalent to Ok. By the previous
corollary we can find an integer γ ∈ J such that

|N(γ)| ≤ (2/π)tN(J)
√
|∆|.

By properties of ideals, since J divides γ, we have

〈γ〉 = JH

for some ideal H. Since N(H)N(J) = N(HJ) = N(〈γ〉) = |N(γ)| it follows
that

N(H) ≤ (2/π)t
√
|∆|

and H is equivalent to I because J is equivalent to I−1 and H is equivalent
to J−1.

Finally we state and prove the fundamental result of this section:

Theorem 2.4. The Class Group of a number field is a finite abelian group.
The Class Number h is finite.

Proof. Let K be a number field of discriminant ∆ and degree n = s + 2t.
Cl(Ok) is an abelian group and it is finite if and only if the number of distinct
classes of fractional ideals is finite. An equivalence class contains an ideal J

with N(J) ≤ (2/π)t
√
|∆|. Since only finitely many ideals have a given norm,

there are only finitely many choises for J and there are only finitely many
equivalence classes [x]. It follows that Cl(Ok) is a finite group.
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2.3 Quadratic forms and ideals of Ok

Now we will show how the previous concepts are connected to the theory of
binary quadratic forms. More details can be found in the book of Harvey
Cohn [16].
Let f(x, y) = ax2 + bxy + cy2 be a primitive binary quadratic form, we recall
that its discriminant is δf = b2 − 4ac.
An integer d is a discriminant for some form f if and only if d ≡ 0, 1(mod4).
We also recall that in Definition 1.7 of Chapter 1 we have defined the notion
of fundamental discriminants.
We can prove that the fundamental discriminants are just the discriminants
of quadratic fields. So, if we use the notation of Definition 1.7, we have
Q(
√

m) = Q(
√

D). In this case we will denote the ring of integers OQ(
√

m) as
Om and Om = Z + Z (D+

√
D)

2
.

We defined, in the previous chapter, an equivalence relation in the set of the
primitive binary quadratic forms and the Class Number as the number of
classes of primitive forms with a fixed discriminant; if this discriminant is a
fundamental discriminant D, we denote this number as h(D).

Now we will set up a precise correspondence between forms and ideals.
At first we say that an ideal is primitive when it is not divisible by any
rational ideal except 〈1〉. The definition of primitive form has been given in
the previous chapter in Definition 1.3.
Moreover in order to state the following result we need to give the definition
of ordered basis of an ideal.

Definition 2.4. A basis [α, β] of an ideal I is said to be ordered if

∆√
d

=
1√
d

∣∣∣∣∣α β

α
′

β
′

∣∣∣∣∣ =
αβ

′ − βα
′

√
d

> 0

where α
′ and β

′ are the conjugates of α and β.

We remark that, according to the properties of the norm of an ideal (see
pag. 31), we have ± ∆√

d
= N(I) > 0.
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Lemma 2.2. If we denote by I = [α, β] an ideal of Om with a basis [α, β],
the form

F (x, y) = N(αx + βy)/N(I) = ax2 + bxy + cy2

has integral coefficients and it is a primitive form of discriminant D.

Proof. We have N(αx + βy) = (αx + βy)(α
′
x + β

′
y) = Ax2 + Bxy + cy2,

where α
′
, β′ are the conjugates of α and β.

So N(αx + βy) is a quadratic form. The coefficients of that form belong to
II

′ , where I
′
=
[
α

′
, β

′]. So we can write:
A = αα

′
= aN(I),

B = αβ
′
+ α

′
β = bN(I)

C = ββ
′
= cN(I)

.

〈N(I)〉 contains (hence divides) A, B, C; so the coefficients of F (x, y) are
integers and it is simple to prove that F is primitive.
Moreover, we obtain that

b2 − 4ac = (B2 − 4AC)/(N(I))2 = (αβ
′ − βα

′
)/(N(I))2 = D.

We can say that the form F belongs to the ideal I, writingF = F [α, β] = F (I),

I = [α, β] → F
,

we also say that I leads to F .

Lemma 2.3. Let F (x, y) = Ax2 + Bxy + Cy2 = t(ax2 + bxy + cy2) be a
quadratic form, where ±t is the greatest common divisor of A, B, C. We let
t > 0 if B2 − 4AC > 0 and we choose t so that a > 0 if B2 − 4AC < 0. We
suppose that D = b2 − 4ac is the discriminant for the field Q(

√
D).

37



Then the ideal I, given by the formulas:

I = [α, β] =


[
a, (b−

√
D)/2

]
, a > 0,∀D[

a, (b−
√

D)/2
]√

D, a < 0, D > 0

is integral (i.e. the basis elements are integer) and has an ordered basis. I is
primitive when a > 0, whereas I/

√
D is primitive when a < 0.

Proof. If D ≡ 1(mod4) we have that the basis elements of I are integers
because b is odd; the same is true if D ≡ 0(mod4) because, in this case,
b is even. Moreover, assuming d > 0, we have ∆ = a

√
d, if a > 0, and

∆ = a(−d)
√

d, if a < 0. So, since ∆/
√

d > 0, the basis of I is ordered.
The ideal I is primitive, otherwise an integer u > 1 exists such that u divides
a and u divides (b−

√
D)/2. So we have that u divides (β−β

′
) or u2 divides

D; by the definition of the field discriminant, this is possible only when
D ≡ 0(mod4), and limits u to the value 2. But, if D ≡ 0(mod4), a and b

are even, so 2 divides β and 2 divides
√

D/2 and this is not possible as 4

does not divide
√

D (D/4 is square-free by nature of the field discriminant).

If F is a form satisfying the properties of the Lemma 2.3 and I is the
ideal determined by this form, we write:[α, β] = I = I(A, B, C) = I(F ),

F → I

and say that F leads to I. By Lemma 2.2 and Lemma 2.3 we can describe the
correspondence procedure and then state the Correspondence Theorem.
Starting with a primitive form F = ax2 + bxy + cy2 with a > 0, we can
construct the ideal I(a, b, c) as described in Lemma 2.3; from this ideal,
according to Lemma 2.2, we can costruct a quadratic form F ∗(α, β). We
obtain F ∗ = F .
Starting with a primitive ideal I = [α, β] we can construct, by Lemma 2.2, a
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quadratic form F [α, β]; from this form we obtain, using Lemma 2.3, an ideal
I∗, generally different from I, which is strictly equivalent to I.
Then the situation is the following:

F → I → F ∗ ⇒ F = F ∗;

I → F → I∗ ⇒ I:I∗

where the equivalence of ideals is in the narrow sense.
So we have this important theorem:

Theorem 2.5. (Correspondence Theorem) If we have two equivalent forms

F1:F2

and F1 → I1, F2 → I2, then
I1:I2

where the equivalence ideal is always narrow.
Conversely, if two ideals I1,I2 are strictly equivalent and I1 → F1, I2 → F2,
then

F1:F2.

Then we can say that there is a one-to-one correspondence between a
representative set of forms of discriminant D and a representative set of
ideals strictly equivalent; in other words the abelian group of classes of prim-
itive binary quadratic forms of discriminant D (where the operation between
forms is the Gaussian Composition8) isomorphic to the narrow class group
Cl(Om)+ (where the relationship between m and D was described earlier).

2.3.1 Class Number Formula

Now, by the Correspondence Theorem and by the results of the first chapter,
we are going to find again a Class Number formula.

8see Definition 4.2
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At first we notice that if m < 0 (and so D) there is no distinction between
equivalence in the narrow sense and in the ordinary sense because every el-
ement has a strictly positive norm. Also if m > 0 and there is a unit in
K of norm −1, there is no distinction because, if necessary, we can have an
element of positive norm by multiplying it by this unit. If m > 0 and there is
no unit of norm −1, each ideal class in the ordinary sense contains two ideal
class in the narrow sense. So if denote by h(m) the number of ideal classes
in K in the ordinary sense and by h+(m) that of classes of equivalence in the
narrow sense, we have:h+(m) = h(m) if m < 0 or ∃ε ∈ U(Om) s.t. N(ε) = −1

h+(m) = 2h(m) if m > 0 and there is no unit of norm −1 .

If m > 0 we can combine these results by using the fundamental unit of
K that is a unit ε1 > 1 such that every other unit can be written as ±εn

1 ,
n ∈ Z.

In fact the unit ε with norm −1 is

ε =

ε1 if N(ε1) = 1

ε2
1 if N(ε1) = −1

,

so if m > 0, we have:

h+(m) log(ε) = 2h(m) log(ε1).

By using this formula we obtain the final expressions for the class number of
a quadratic field :

h(m) = − w

2|m|

|m|∑
k=1

k
(m

k

)
if m < 0 (2.1)

h(m) log(ε1) = −1

2

|m|∑
k=1

(m

k

)
log sin

(mπ

d

)
if m > 0. (2.2)
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Chapter 3

Analytic properties of the Class

Number

Many problems about the class-number hd have attracted mathematicians
also in recent years. In this chapter we are going to deal with some of these.
In particular now we will touch on the so-called Gauss’s Class Number Prob-
lem and we will analyse some important analytic properties of hd and some
conjectures about it; in the next chapter we will turn our attention to the
question of searching an efficient computation of it.

3.1 Gauss’s Class Number Problem.

In the previous chapter we said that the ring of integers of a quadratic field
Q(
√

d), when d is negative, is a UFD if and only if d takes one of the values
{−1,−2,−3,−7,−11,−19,−43,−67,−163}; this means that we know all the
values of the integer −d such that h(−d) = 1. For a given m, the problem
to determine a list of fundamental discriminants −d such that h(−d) = m

is called Gauss’s Class Number Problem because Gauss was the first to deal
with it; the above-mentioned numbers solve this problem for m = 1.
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Baker, in 1971, and Stark, in 1975, independently found the values of d

such that h(−d) = 2; successively the cases h(−d) = 3 and h(−d) = 4 were
solved by Oesterlé in 1985 and Arno in 1992.
Arno himself, in 1993, solved h(−d) = m where m is odd and 5 ≤ m ≤ 23

and Watkins solved this problem for all m ≤ 16.

3.1.1 Class Number for particular d

The behavior of the class-number is well-known only when the number d has
a particular form. Now we will show some examples.
When d = p, where p ≡ 3 mod 4, and hp = 1, we have this important result
due to Hirzebruch [23]:

h−p =
1

3

l∑
i=1

(−1)l−iki;

where k1, ..., kl is the sequence of denominators in one period of the continued
fraction expansion1 of the number √p−

⌊√
p
⌋
.

Particular are also the situations when the discriminant is dj = j2 +4, where
j is a positive integer, or dk = 4k2 + 1; in fact in these cases we have the two
inequalities

hj = h(j2 + 4) > 1, if j is odd and j > 17;

hk = h(4k2 + 1) > 1, if k > 13

conjectured respectively by Yokoi and Chowla, and proved by Birò in 2003.
Precisely, in his work, Birò [3, 4] uses the Siegel’s Theorem (which we will
state in the next section) and the fact that hj = 1 if and only if the Legendre
symbol

(
dj

r

)
= −1 for all the primes r such that 2 ≤ r < j (the same occurs

for hk), to prove that

hj = 1 ⇐⇒ j ∈ {1, 3, 5, 7, 13, 17}
1The continued fraction expansion of a number is an expression x0 + 1

x1+
1

x2+ 1
x3+ 1

...
which can be periodic; the numbers x1, x2, x3, . . . are said the denominators of the fraction.
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and
hk = 1 ⇐⇒ k ∈ {1, 2, 3, 5, 7, 13} .

3.2 Properties of the Class Number

3.2.1 Estimates of h(d)

A first important property of the Class-number was conjectured by Gauss in
his Disquisitiones Arithmeticae.
He said that h(d) →∞ as d → −∞, but a proof of that conjecture has been
given only in modern times.
In 1918 Hecke proved that if every real zero β of L(s, χ), where χ is a real
primitive character to the modulus q, satisfies the inequality

β < 1− c1/ log q,

then
h(d) > c2|d|

1
2 / log(|d|),

where c1 and c2 are constants; but the proof given by Hecke came out from
the generalized Riemann hypothesis2.
In 1934 Heilbronn proved that h(d) →∞ as d → −∞ under the assumption
of the falsity of the generalized Riemann hypothesis.
Helibronn’s result with the one of Hecke, gave a proof of the conjecture of
Gauss unconditionally.
The fundamental result of those years about L-functions and class-number
was Siegel’s theorem (1935); we will state it in one of its two forms:

2This is the hypothesis that all the functions L(s, χ) have their zeros, σ + it, in the
critical strip on the line σ = 1

2 ; this hypothesis was formulated in 1884 by Piltz.
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Theorem 3.1. For any ε > 0 there exists a positive number C1(ε) such that,
if χ is a real primitive character to the modulus q, then

L(1, χ) > C1(ε)q
−ε.

By Class Number Formula, obtained in the previous chapters

h(d) =
w|d| 12
2π

L(1, χ) for d < 0 (3.1)

h(d) =
d

1
2

log η
L(1, χ) for d > 0, (3.2)

where η is the fundamental unit, we have that Siegel’s theorem implies the
following inequalities:

h(d) > C2(ε)|d|
1
2
−ε for d < 0 (3.3)

and

h(d) log η > C2(ε)d
1
2
−ε for d > 0. (3.4)

There are many applications of those results to study class-number proper-
ties. First of all we remark that Siegel’s Theorem gives an immediate proof
of the above-stated conjecture of Gauss.
Moreover it implies the following estimates:

Proposition 3.1. If d is a fundamental discriminant and η the fundamental
unit, then

log(h(d)): log(
√
|d|) as d → −∞ (3.5)

and

log(h(d) log(η)): log(
√

d) as d →∞. (3.6)
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In order to prove Proposition 3.1, we need to state another fundamental
result known as Polya-Vinogradov inequality:

Lemma 3.1. ( Polya-Vinogradov Inequality) Let χ be a nonprincipal char-
acter (modq), then

M+N∑
n=M+1

χ(n) = O(q1/2 log q) (3.7)

Proof. (of Proposition 3.1) We consider the case d < 0 and give a proof
of (3.5); (3.6) is obtained using exactly the same method.
From (3.3) we obtain

log(h(d)) > log(C2(ε)|d|1/2−ε)

and this implies

log(h(d))

log(|d| 12 )
>

log(C2(ε)|d|1/2−ε)

log(|d| 12 )
=

log(C2(ε))

log(|d| 12 )
+

log(|d|1/2−ε)

log(|d| 12 )
.

As d → −∞, we have

log(h(d))

log(|d| 12 )
> 1− ε. (3.8)

Moreover, in the first chapter we proved that, if d < 0,

L(1, χ) = − π

|d| 32

|d|∑
m=1

m

(
d

m

)
and now we recall that the Jacobi symbol

(
d
m

)
is a nonprincipal character

modulo |d|, whenever d ≡ 0 or 1(mod4) and not a square number.
So we have

L(1, χ) = − π

|d| 32

|d|∑
m=1

m

(
d

m

)
= − π

|d| 32

|d|∑
m=1

mχ(m)
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and, using partial summation formula of Abel,

|d|∑
m=1

mχ(m) = |d|
|d|∑

m=1

χ(m)− 1χ(1)−
∫ |d|

1

t∑
m=1

χ(m)dt.

Since
∑|d|

m=1 χ(m) = 0 and
∑t

m=1 χ(m) = O(
√
|d| log(|d|)), from Lemma 3.1,

it follows that L(1, χ) = O(log |d|).
From this result we obtain

h(d) < c
w|d| 12
2π

log(|d|),

where c is an absolute constant, and so

log(h(d)) < log
(cw

2π

)
+ log(|d|1/2) + log(log(|d|));

log(h(d))

log(|d|1/2)
<

log( cw
2π

)

log(|d|1/2)
+ 1 +

log(log(|d|))
log(|d|1/2)

As d → −∞ we have

log(h(d))

log(|d|1/2)
< 1 + ε. (3.9)

From (3.8) and (3.9) it follows that log(h(d)): log(
√
|d|), as d → −∞.

3.2.2 The mean value of h(d)

Other important results are about the mean value of h(d). A first conjecture
for the average number of properly primitive classes of a fixed discriminant
was given by Gauss in Sects. 302 and 304 of the Disquisitiones.
If h+(d) denotes, as in the previous chapter, the class-number obtained from
the narrow definition of equivalence (of quadratic forms or of ideals), Gauss
stated that as N →∞ ∑

0<−d<4N
4|d

h+(d):
4π

21ζ(3)
N3/2, (3.10)

and
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∑
0<d<4N

4|d

h+(d) log η+:
4π2

21ζ(3)
N3/2, (3.11)

where η+ = t+u
√

d
2

, with t,u the smallest positive solutions of t2 − du2 = 4,
and ζ(s) is the Riemann Zeta Function.
In 1944, Siegel proved more general results [32] which implied the conjectures
of Gauss:

Theorem 3.2. If d ≡ 0, 1(mod4) no square∑
0<−d<N

h+(d) =
π

18ζ(3)
N3/2 + O(N log N) (3.12)

and ∑
0<d<N

h+(d) log η+ =
π2

18ζ(3)
N3/2 + O(N log N) (3.13)

Proof. At first we will prove (3.13). Since d > 0, from the definition, we can
write

d−
1
2 h+(d) log η+ =

∞∑
n=1

(
d

n

)
n−1

and we can introduce these notations

d−
1
2 h+(d) log η+ = fd

N∑
n=1

(
d

n

)
n−1 = σd. (3.14)

If we also denote sn =
∑n

k=1 χ(k), we will obtain

∞∑
n=N+1

χ(n)n−1 =
∞∑

n=N+1

(sn − sn−1)n
−1 =

∞∑
n=N

sn

(
1

n
− 1

n + 1

)
− snN

−1

and so, from Lemma 3.1,∣∣∣∣∣
∞∑

n=N+1

χ(n)n−1

∣∣∣∣∣ < 2cN−1d1/2 log d. (3.15)
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From (3.15) we have

|fd − σd| < 2cN−1d
1
2 log d (3.16)

and, when d is a square,

|σd| ≤
N∑

n=1

n−1 < 1 + log N. (3.17)

Let r be either 0 or 1 and let t be such that 1 ≤ t ≤ N and t ≡ r(mod4),
so we can consider d belonging to the set of all those t which are no square
numbers.
We have∑

d

fd =
∑

d

∞∑
n=1

(
d

n

)
n−1 =

N∑
n=1

n−1
∑

t

(
t

n

)
+

∞∑
n=N+1

n−1
∑

t

(
t

n

)
,

where the sums are all over non-square t, and so, from (3.16) and (3.17), as
N →∞, we obtain∑

d

fd =
N∑

n=1

n−1
∑

t

(
t

n

)
+ O(N

1
2 log N) (3.18)

Now we define

Pr(n) =
∑

t

(
t

n

)
(n = 1, 2, ..., N). (3.19)

At first we consider the case when n is not a square. If n is even, from
the properties of Jacobi Symbol, we obtain Pr(n) = 0. Instead, if n is odd,
since χ1(k) =

(
k
n

)
is a nonprincipal character modulo n, from Lemma 3.1, it

follows that
P0(n) =

∑
4k≤N

χ1(k) = n
1
2 log nO(1).

Let l = 2α such that l|n but 2l 6 |n, then s = n/l is odd and, whenever t is
odd,

(
t
n

)
=
(

t
ls

)
=
(

t
l

) (
t
s

)
=
(

l
t

) (
t
s

)
.

If we consider χ2(k) =
(

4l
k

) (
k
s

)
and χ3(k) =

(−4l
k

) (
k
s

)
, these are nonprincipal

characters modulo 4n; then, again from Lemma 3.1, we obtain

P1(n) =
1

2

∑
k≤N

(χ2(k) + χ3(k)) = n
1
2 log nO(1)
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and so, when r = 0, 1 and 1 ≤ n ≤ N , n no square,

Pr(n) = n
1
2 log nO(1). (3.20)

Now we consider the case n = u2.
We recall that the Jacobi symbol

(
t

u2

)
= 1, then Pr(n) is equal to the number

of integers t such that 1 ≤ t ≤ N , (t, u) = 1 and t ≡ r(mod4). Since
# {t ≡ 0(mod4)} = # {t ≡ 1(mod4)} = N

4
, we have

Pr(u
2
1) =

ϕ(u1)

4u1

N + u1O(1) (u1 odd, ) (3.21)

because the number of t such that (t, u2
1) = 1 is equal to ϕ(u1)

u1
+ u1O(1).

Instead, if we consider an even integer u2 = 2k, whenever t ≡ 0(mod4), we
have (t, u2) ≥ 2, and so P0(u

2
2) = 0. When t ≡ 1(mod4) we have (2k, t) =

(k, t), then

P1(u
2
2) = P1(k

2) =
N

4

ϕ(k)

k
=

N

2

ϕ(u)

u
,

because of ϕ(u) = ϕ(2k) = ϕ(2)ϕ(k) = ϕ(k). So we can write:

Pr(u
2
2) = r

ϕ(u2)

2u2

N + u2O(1) (u2 even.) (3.22)

Those results allow us to write the following expression:∑
u2≤N

u−2Pr(u
2) =

N

4

∑
u2
1≤N

u1 odd

u−3
1 ϕ(u1) +

rN

2

∑
u2
2≤N

u2 even

u−3
2 ϕ(u2) + O(log N)

=
N

4

ζ(2)

ζ(3)

(
1 +

2r − 1

7

)
+ O(

√
n),

(3.23)

where ζ(s) = 1
ns is the Riemann zeta-function, because of∑

u2≤
√

N
u2 even

ϕ(u2)

us
2

=
1

2s − 1

ζ(s− 1)

ζ(s)
+ O

(
1

N
s−2
2

)
;

∑
u1≤

√
N

u1odd

ϕ(u1)

us
1

=
2s − 2

2s − 1

ζ(s− 1)

ζ(s)
+ O

(
1

N
s−2
2

)
.
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From (3.18), (3.19), (3.20), (3.23), recalling that ζ(2) =
∑∞

n=1
1
n2 = π2

6
, it

follows ∑
d

fd =
N∑

n=1

n−1Pr(n) + O(N
1
2 log N)

=
π2N

24ζ(3)

(
1 +

2r − 1

7

)
+ O(N

1
2 log N).

(3.24)

Now we apply the partial summation formula to obtain∑
d

d
1
2 fd =

π2N
3
2

36ζ(3)

(
1 +

2r − 1

7

)
+ O(N log N), (3.25)

where d are integers belonging to 1 ≤ t ≤ N ,d ≡ r(mod4) and they are not
squares.
Recalling that h+(d) log η+ = fdd

1
2 , we have from (3.25)

∑
d

h+(d) log η+ =
π2N

3
2

42ζ(3)
+

2π2N
3
2

63ζ(3)
+O(N log N) =

π2

18ζ(3)
N3/2+O(N log N).

So we have proved (3.13).
The proof of (3.12) is similar. In fact, using the formula

|d|−
1
2 h+(d)

2π

w
=

∞∑
n=1

(
d

n

)
n−1

where w has been defined in the previous chapter, we obtain∑
d≤N

−d≡r(mod4)

d−
1
2 h+(−d) =

πN

24ζ(3)

(
1 +

2r − 1

7

)
+ O(N

1
2 log N)

and so ∑
0<−d<N

h+(d) =
π

18ζ(3)
N3/2 + O(N log N).

Remark 3.1. We remark that we obtain similar results for the wide defini-
tion of equivalence, using the relationship h+(d) log η+ = 2h(d) log η.
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Another fundamental result about the mean value of h(d) is given by the
following theorem [1]:

Theorem 3.3. If d < 0,

′∑
0<−d≤N

h(d)√
|d|

=
N

2π
C + O(N3/4 log N),

and
if d > 0

′∑
0<d≤N

h(d) log ε√
d

=
N

4
C + O(N3/4 log N)

where
C =

∏
p

(
1− 1

p2(p + 1)

)
and

∑′
means that the summation is over the fundamental discriminants.

Proof. We will prove only the case d > 0 because the prove of the case d < 0

is similar. Since h(d) = d1/2

log η
L(1, χ) and from Lemma 3.1, we have

h(d) log η =
N∑

n=1

χ(n)

n
+ O

(
|d|1/2 log |d|

N

)
. (3.26)

We sum (3.26) over all fundamental discriminants; so we obtain

∑
0<d≤N ;
d fund.

log ηh(d) =
∑

0<d≤N ;
d fund.

N∑
n=1

χ(n)

n
+ O

( ∑
0<d≤N

|d|1/2 log |d|
N

)
, (3.27)

and so ∑
0<d≤N ;
d fund.

log ηh(d) =
N∑

n=1

1

n

∑
0<d≤N ;
d fund.

(
d

n

)
+ O

(
N1/2 log N

)
. (3.28)

Now we denote

S(n) =
∑

0<d≤N ;
d fund.

(
d

n

)
. (3.29)
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We recall that d is a fundamental discriminant if d 6= 0, 1 and

d =

m if m ≡ 1( mod 4)

4m if m ≡ 2, 3( mod 4)
,

for some squarefree integer m. So we have

S(n) =
∑

0<d≤N ;
d≡1( mod 4);

d fund.

(
d

n

)
+

∑
0<d≤N ;

d/4≡2( mod 4);
d fund.

(
d

n

)

+
∑

0<d≤N ;
d/4≡3( mod 4);

d fund.

(
d

n

)

= S1(n) + S2(n) + S3(n).

(3.30)

Since d is square-free, we have∑
0<d≤N ;

d≡1( mod 4)

(
d

n

)
µ2(d),

where µ(d) is the Möbius function. Moreover we can write

µ2(d) =
∑
l2|d

µ(l)

and so, if we put d = l2k,

S1(n) =
∑

0<l2k≤N ;
l2k≡1( mod 4)

(
l2k

n

)
µ(l). (3.31)

Now we observe that the condition l2k ≡ 1(mod4) forces l to be odd, that
means l2 ≡ 1(mod4), and so we have

S1(n) =
∑

0<l2k≤N ;
k≡1( mod 4);
(l,n)=(l,2)=1

(
k

n

)
µ(l)

=
∑

0<l≤
√

N ;
(l,2n)=1

µ(l)
∑

0<k≤N/l2;
k≡1( mod 4)

(
k

n

)
.

(3.32)
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Using the same method, we have

S2(n) =

(
4

n

) ∑
0<l≤

√
N/2;

(l,2n)=1

µ(l)
∑

0<k≤N/4l2;
k≡2( mod 4)

(
k

n

)
; (3.33)

S3(n) =

(
4

n

) ∑
0<l≤

√
N/2;

(l,2n)=1

µ(l)
∑

0<k≤N/4l2;
k≡3( mod 4)

(
k

n

)
. (3.34)

Let
P (r, n, M) =

∑
0<k≤M ;

k≡r( mod 4)

(
k

n

)
.

We remark that when n is even, then S2(n) = S3(n) = 0. Now let us consider
two cases: n square or not-square.
If n is not a square, from the properties of the Jacobi symbol, used also in
the proof of Theorem 3.2, and also from Lemma 3.1, we obtain

P (r, n, M) = O(min(n1/2 log n,M)) (3.35)

and

S(n) = O(N1/2n1/4 log1/2 n). (3.36)

If n is a square n = m2, we have

P (r, m2, M) =
ϕ(4m)M

4m
+ O(m),

when m is odd and

P (1, m2, M) =
ϕ(m)M

2m
+ O(m),

when m is even.
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So, when n is odd, we can write

S(n) = S1(n) + S2(n) + S3(n)

=
ϕ(m)N

8m

∑
0<l≤

√
N/2;

(l,2n)=1

µ(l)

l2
+

ϕ(m)N

4m

∑
0<l≤

√
N ;

(l,2n)=1

µ(l)

l2
+ O(m

√
N)

=
3ϕ(m)N

8m

∞∑
l=1;

(l,2n)=1

µ(l)

l2
+ O

(
ϕ(m)N

m

∑
l>N

1

l2

)
+ O(m

√
N)

=
3ϕ(m)N

8m

∞∑
l=1;

(l,2m)=1

µ(l)

l2
+ O(

√
N) + O(m

√
N),

(3.37)

and, when n is even,

S(n) =
ϕ(m)N

2m

∞∑
l=1;

(l,m)=1

µ(l)

l2
+ O(

√
N) + O(m

√
N). (3.38)

Using the properties of the Möbius function and recalling also that ϕ(m) =

m
∏

p|m(1− 1/p) , the sum in ??3.37) is

∞∑
l=1;

(l,2m)=1

µ(l)

l2
=
∏
p6|2m

(
1 +

µ(p)

p2

)
=
∏

p

(
1− 1

p2

)∏
p|2m

(
1− 1

p2

)−1

=
1

ζ(2)

4

3

∏
p|m

(
1− 1

p

)−1(
1 +

1

p

)−1

=
4m

3ζ(2)ϕ(m)
g(m),

(3.39)

where g(m) =
∏

p|m(1 + 1/p)−1.

Moreover, by the same argument, we obtain
∞∑

l=1;
(l,m)=1

µ(l)

l2
=

m

ζ(2)ϕ(m)
g(m). (3.40)

Therefore, from (3.37), (3.38), (3.39), it follows

S(n) =
N

2ζ(2)
g(m) + O(

√
N) + O(m

√
N), (3.41)
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where n is a square, n = m2. Now, using (3.28), (3.41), (3.36), we can write∑
0<d≤N ;
d fund.

log ηh(d) =
N∑

n=1

S(n)

n
+ O(N1/2 log N)

=
N

2ζ(2)

∑
1≤m≤

√
N

g(m)

m2
+ O(N3/4 log N)

(3.42)

Moreover we observe that

g(m) =
∏
p|m

(
1 +

1

p

)−1

=
∏
p|m

(
1− 1

p + 1

)
and that g(m) is a multiplicative function.
Therefore

1

ζ(2)

∑
m=1

g(m)

m2
=

1

ζ(2)

∏
p

(
1 +

∞∑
r=1

g(pr)

p2r

)

=
1

ζ(2)

∏
p

(
1 +

(
1− p

p + 1

) ∞∑
r=1

1

p2r

)

=
∏

p

(
1− 1

p2(p + 1)

) (3.43)

and we can conclude that∑
0<d≤N ;
d fund.

log ηh(d) =
N

2

∏
p

(
1− 1

p2(p + 1)

)
+ O(N3/4 log N).

From Theorem 3.3, since
∑′

0<−d<N 1:(3π2)N:
∑′

0<d<N 1, where
∑′, as

defined before, is the sum over the fundamental discriminants, we have the
following mean value results:

lim
N→∞

∑′
0<−d<N(h(d)/

√
−d)

# {0 < −d < N}
=

πc

6
,

lim
N→∞

∑′
0<d<N((h(d) log η)/

√
d)

# {0 < d < N}
=

π2c

12

where
c =

∏
p

(
1− 1

p2(p + 1)

)
.
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3.2.3 Estimates of L(1, χd)

The problem to determine the distribution of values of L(1, χd) as d varies
over all fundamental discriminants with |d| ≤ N has also interested mathe-
maticians for a long time.
Under the generalized Riemann hypotesis, in 1928, Littlewood showed that(

1

2
+ o(1)

)
ζ(2)

eγ log log d
≤ L(1, χd) ≤ (2 + o(1)) eγ log log d,

where γ is Euler’s constant. In 1949, Chowla proved the following inequal-
ities:

L(1, χd) ≤ (1 + o(1))
ζ(2)

eγ log log d

L(1, χd) ≥ (1 + o(1)) eγ log log d.

Thus, those results showed a discrepancy between the extreme values taken
by L(1, χd) and the conditional bounds on these extreme values. To study
this question, Montgomery and Vaughan [30], in 1999, introduced a prob-
abilistic model to predict precisely the frequencies by which some extreme
values of L(1, χd) occur.
In 2003 Granville and Soundararajan [24] proved a part of the conjectures
of Montgomery and Vaughan and obtained that the behavior of the extreme
values of L(1, χd) is just that described by the results of Chowla. Granville
and Soundararajan used a simple probabilistic model. They considered, for
primes p, the independent random variables X(p) taking the following values:

1 with probability p/(2(p + 1))

0 with probability 1/(p + 1)

-1 with probability p/(2(p + 1))

and they extended X to all integers n as X(n) =
∏

pα||n Xα(p). So they
compared the distribution of values of L(1, χd) to the distribution of the
"random Euler products" L(1, X) =

∏
p(1 − X(p)/p)−1. The fundamental

unconditional result which they obtained was the existence of infinitely many
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d such that L(1, χd) is as large as

eγ(log log d + log log log d + c
′
+ o(1)),

where c
′ is a calculable constant.

3.2.4 Cohen-Lenstra Heuristics

In 1984, H. Cohen and H. W. Lenstra [9] devepoled some conjectures
about the behavior of the class-number and the class-group that are very
important because of the existence of very few theorems about them. Those
conjectures were based on a large number of observations and on solid heuris-
tic grounds. Many results have been confirmed by numerical evidence and
some of them have been proved in recent years by other means.

At first we consider the case of imaginary quadratic fields.
We denote by H̃d the odd part of the class-group, which is the subgroup of
all elements in the class group Hd with odd order.

Conjecture 3.1. Let d be a negative fundamental discriminant. For any
odd prime p let η(p) =

∏∞
k=1

(
1− 1

pk

)
and let C =

∏∞
j=2 ζ(j).

1. The probability that H̃d is cyclic is equal to

π2ζ(3)

18ζ(6)Cη(2)
= 0.9775748102...

2. If p is an odd prime, the probability that p divides hd is equal to

f(p) = 1− η(p);

for example f(3) ≈ 0.439873, f(5) ≈ 0.239667 and f(7) ≈ 0.163204.

3. If p is an odd prime, the probability that the p-Sylow3 subgroup of Hd is
isomorphic to a given finite Abelian p-group G is equal to η(p)/|Aut(G)|,
where Aut(G) is the group of automorphism of G.

3The p-Sylow subgroup of a finite abelian group G is a p-subgroup with the property
that its order is the maximal power that divides |G|.
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4. If p is an odd prime, the probability that the p-Sylow subgroup of Hd

has rank r (i.e. is isomorphic to a product of r cyclic groups) is equal
to p−r2

η(p)/((p)r)
2, where (p)r :=

∏r
k=1

(
1− 1

pk

)
.

The situation for real quadratic fields is more complicated because we
know even less about them than about imaginary quadratic fields. However
we can state the following:

Conjecture 3.2. Let d a positive fundamental discriminant.

1. If p is an odd prime, the probability that p divides hd is equal to

1− η(p)

1− 1/p
.

2. The probability that H̃d is isomorphic to a given finite abelian group G

of odd order g is equal to

1/(2gη(2)C|Aut(G)|).

3. If p is an odd prime, the probability that the p-Sylow subgroup of Hd

has rank r is equal to

p−r(r+1)η(p)/((p)r(p)r+1).

4. ∑
p≤x

p≡1(mod4)

h(p):
x

8
.

We notice that those conjectures explain the experimental observation that
3/4 of real quadratic fields have a class- number equal to one.
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Chapter 4

Computing the Class Number and

the structure of the Class Group

In the previous chapters we gave the definition of the Class Number, we found
an analytic formula for computing it and we studied its main properties using
the theory of binary quadratic forms and the theory of ideals in quadratic
fields.
Now we turn our attention to the computational problem. It means that
we are going to study the algorithms which allows us to compute efficiently
the Class Number and the structure of the Class Group. It is important to
recall that, by the Correspondence Theorem stated in the second chapter,
computing on binary quadratic forms or computing on ideals is the same
thing. However we are going to use usually ideals to state theory before the
construction of the algorithms and quadratic forms for pratical computation.
We are going to study in details only the case of class numbers of imaginary
quadratic fields. In particular we are going to describe Shanks’ baby-step
giant-step method, since it was the first efficient method found, and we are
going to talk about its the improvements until the last results. For every
algorithm we will propose a pseudocode and the analysis of its complexity.
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4.1 Computing Class Number counting reduced

forms.

In the first chapter we defined (Definition 1.2) an equivalence relation on
the set of all quadratic forms and the Class Number as the number of corre-
sponding equivalence classes of forms with a fixed discriminant D.
Two forms F and G are said to be equivalent if there are r, s, t and u ∈ Z,
for which ru− st = 1, such that

x = rX + sY, y = tX + uY

and F (X, Y ) = G(x, y).
Let’s also recall the definition of reduced form.

Definition 4.1. A positive definite quadratic form {a, b, c} of discriminant
D is said to be reduced if |b| ≤ a ≤ c and if, either |b| = a or a = c, then
b ≥ 0.

From Theorem 1.2 of Chapter 1, we have that every class of positive de-
fined quadratic forms of discriminant D < 0 contains exactly one reduced
form. Moreover h(D) is equal to the number of primitive reduced forms of
discriminant D, where we recall that a form {a, b, c} is said to be primitive
if (a, b, c) = 1.
The following lemma allows us to count the number of reduced positive de-
fined forms with a fixed negative discriminant D:

Lemma 4.1. Let F = {a, b, c} a positive defined quadratic form of discrim-
inant D < 0.

1. if F is reduced, we have
a ≤

√
|D|/3;
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2. if
a <

√
|D|/4 and − a < b ≤ a

then F is reduced.

The proof of this lemma follows from the proof of Theorem 1.3 of the first
chapter.
A consequence of this result is that we can compute the Class Number of
an imaginary quadratic field by counting reduced forms of discriminant D,
using the inequalities |b| ≤ a ≤

√
|D|/3.

Using these results, we can build an algorithm to compute Class Number of
an imaginary quadratic field of discriminant D. We remark that the following
algorithm computes the Class Number when D is a fundamental discrimi-
nant, but it can be extended to non-fundamental discriminants because we
can write every discriminant D as D = D0f

2, where D0 is a fundamental
discriminant [10].

REDUCED-FORMS(D)

Input: a fundamental negative discriminant D.
Output: the Class Number h(D).

1. if D ≡ 0(mod4);

2. set b = 0;

3. else;

4. set b = 1;

5. set B =
√
|D|/3;

6. set k = 1;

7. do ;

61



8. set h=COUNT(b, D, k);

9. b = b + 2;

10. k = h;

11. while b ≤ B;

12. j = k;

13. return j.

Let’s now describe the subalgorithm COUNT.
COUNT(b, D, k)

1. set h = k;

2. set q = (b2 −D)/4;

3. set a = b;

4. if a > 1;

5. do;

6. if q divides a;

7. if a = b or b = 0 or a2 = q;

8. set h = h + 1;

9. else;

10. set h = h + 2 ;

11. a = a + 1;

12. else;

13. set a = a + 1;
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14. while a2 ≤ q;

15. else;

16. set a = 2;

17. while a2 ≤ q;

18. if q divides a;

19. if a = b or b = 0 or a2 = q;

20. set h = h + 1;

21. else;

22. set h = h + 2 ;

23. a = a + 1;

24. else;

25. set a = a + 1;

26. return h.

4.1.1 The complexity of the algorithm REDUCED-FORMS.

The complexity of REDUCED-FORMS equals the complexity of the subalgorithm
COUNT times the number of its iterations .
In COUNT we have a loop on a which is executed only when a2 ≤ q and b ≤ B,
so its complexity is

O
(⌊√

(b2 −D)/4
⌋)

= O
(⌊√

|D|
⌋)

.

COUNT is executed when b ≤ B and at every step b becomes b + 2; so the
complexity of REDUCED-FORMS is

O
(⌊√

|D|
⌋ ⌊√

|D|
⌋)

= O (|D|) .
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This method is useful for making tables of Class Number of imaginary quadratic
fields up to a fixed discriminant bound, but it becomes very slow for large
discriminants. Moreover it does not give information about the structure of
the Class Group.

4.2 Analytic Formulas to compute Class Num-

ber

Another method to compute Class Number is based on the analytic formula
proved in the first chapter and on the functional equation of the L functions
which is proved in the book of H. Davenport [21].
We recall that, when D is a negative discriminant and D < −4,

h(D) =

√
|D|LD(1)

π
, (4.1)

where
LD(1) =

∑
n≥1

1

n

(
D

n

)
.

Moreover, since the Kronecker Symbol
(

D
n

)
is a character modulo D and(

D
−1

)
= −1, we have the following functional equation of LD(1)

π−1|D|L(1) =
1

2

∫ ∞

1

∞∑
−∞

n

(
D

n

)
e−

n2πx
D dx

+
1

2

∫ ∞

1

∞∑
−∞

n

(
D

n

)
e−

n2πx
D x−1/2dx.

(4.2)

Using this equation we can obtain an efficient formula to compute Class
Number [15].

Proposition 4.1. Let D < −4 be a fundamental discriminant. Then

h(D) =
∑
n≥1

(
D

n

)(
erfc

(
n

√
π

|D|

)
+
|D|
nπ

e
−πn2

|D|

)
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where
erfc(x) =

2√
π

∫ ∞

x

e−t2dt

is the Error Complementary Function.

Proof. From the equation (4.2) we have

LD(1) =
π

2|D|

∫ ∞

1

∞∑
−∞

n

(
D

n

)
e

−n2πx
D dx

+
1

2

∫ ∞

1

∞∑
−∞

n

(
D

n

)
e

−n2πx
D x−

1
2 dx.

(4.3)

Since we have the uniform convergence of the series
∑∞

−∞ n
(

D
n

)
e

−n2πx
D , we

can exchange the series and the integral and so we obtain

LD(1) =
π

2|D|

∞∑
−∞

n

(
D

n

)∫ ∞

1

e
−n2πx

D dx

+
1

2

∞∑
−∞

n

(
D

n

)∫ ∞

1

e
−n2πx

D x−
1
2 dx

=
π

2|D|

∞∑
−∞

n

(
D

n

)
D

n2π
e−

n2π
D

+
π

2|D|

∞∑
−∞

n

(
D

n

)
2

∫ ∞

n
√

π
|D|

e−t2

√
|D|
π

1

n
dt

=
∑
n≥1

1

n

(
D

n

)
e−

n2πx
D + 2

√
π

|D|
∑
n≥1

(
D

n

)∫ ∞

n
√

π
|D|

e−t2dt,

(4.4)

where we have used the substitution n2πx
D

= t2, in the integral, and the fact
that

∑∞
−∞

1
n

(
D
n

)
= 2

∑∞
n≥1

1
n

(
D
n

)
. So from (4.1) and (4.4) we obtain

h(D) =
∑
n≥1

(
D

n

)(
erfc

(
n

√
π

|D|

)
+
|D|
nπ

e
−πn2

|D|

)
.

In order to compute the function erfc(x) we can use this proposition.
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Proposition 4.2. We have

erfc(x) = 1− 2√
π

∑
k≥0

(−1)k x2k+1

k!(2k + 1)

when x ≤ 2 and

erfc(x) =
e−x2

x
√

π

1− 1/2

2 + X − 1·3/2

4+X− 2·5/2

6+X−
...

 ,

where X = x2 − 1/2, when x ≥ 2.

So we can compute Class Number using the series of Proposition 4.1 as
shows the following result.

Corollary 4.1. h(D) is the closest integer to the n-th partial sum of the
series of Proposition 4.1 where

n =
⌊√

|D| log |D|/(2π)
⌋

.

The running time of this method is O
(
|D|1/2+ε

)
∀ε > 0, however with a

large constant O.

4.3 Shanks’s Baby Step Giant Step Algorithm

In 1968, Shanks [11] found a method to compute the order of an element g of
an abelian finite group G. This method can be modified to obtain the order
of the group G and its structure and so it can be used to compute the Class
Number of a quadratic field and the structure of the Class Group.
It is based on the representation of a finite abelian group G via generators
and relations.
Such description allows us to obtain the structure of G by manipuling par-
ticular matrices. In the sections first we describe the method applied to a
general finite abelian group and then we use it in the case of the Class Group.
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4.3.1 Computing the order of an element

Let us describe Shanks’s algorithm to compute the order n of an element g

of the group, when an upper bound B for such a order is known [34]. We
can proceed in the following way.
We denote q =

⌈√
B
⌉
. We compute gr where 0 ≤ r < q (these are called

baby steps) and we record these elements in a sorted list. We set g1 = g−q;
we compute ga

1 for all 0 ≤ a < q (these are called giant steps) and we search
for it in the previous list; if it is found we have gaq+r = 1. This means that
aq + r is a multiple of n; so by the factorization of aq + r (we suppose this
number is of factorable size) and, by using basic properties, we obtain the
order of g.
We can improve this algorithm if we know also a lower bound C of n. In this
case, in fact, we can reduce the number of the giant steps by starting the list
with gC instead of g0 and we can set q =

⌈√
B − C

⌉
.

A pseudocode for the algorithm is the following.

BABY-STEP GIANT-STEP(g, B, C)

Input: B and C such that B/2 < C ≤ n ≤ B.
Output: the order n.

1. Set q =
⌈√

B − C
⌉
;

2. for 0 ≤ r < q;

3. compute baby step gr;

4. store (gr, r) in a sorted list;

5. for 0 ≤ a ≤ q;

6. compute giant step g−C−aq;

7. search for this element in the list (gr, r);
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8. if g−C−aq = gr;

9. set n = C + aq + r;

10. factorize n;

11. while p is a prime which divides n;

12. compute gn/p;

13. if gn/p = 1;

14. n = n/p;

15. return n.

Let us now discuss the computational cost of this method.
We need to execute the following computations : q baby steps, b(n− C)/qc+
1 giant steps. Moreover we need to precompute g−C and we need to store
q pairs (gj, j). So, if we sort the list with a O(q log q) sorting method, the
search in the sorted list takes only O(log q) operations and so the total com-
putational time is O(q log q).

4.3.2 Computing order and structure of the group

Before explaining the algorithm to compute the order and the structure of the
group G, let briefly present the theory used to describe the group structure.
More details can be found in the papers by [31] and [8].

Generators and relations

At first we recall that every finite abelian group G is said to be finitely
generated if there exist finitely many elements g1, . . . , gk such that g ∈ G can
be written in the form g =

∏k
i=1 gαi

i with integers α1, . . . , αk.
{g1, . . . , gk} is said a generating set of G.
Moreover let also recall the fundamental theorem of finitely generated

abelian groups.
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Theorem 4.1. Every finitely generated abelian group G is isomorphic to
a direct sum of primary cyclic groups and infinite cyclic groups; where a
primary cyclic group is one whose order is a power of a prime. Hence every
such a group is isomorphic to one of the form

Zn ⊕ Z/m1Z⊕ Z/m2Z · · · ⊕ Z/mkZ

where n ≥ 0 and the numbers m1, . . . ,mt are (not necessarily distinct) powers
of prime numbers.The values of n, m1, . . . ,mt are (up to their order) uniquely
determined by G. In particular, G is finite if and only if n = 0.

We remark that, since Z/mZ is isomorphic to the direct product of Z/jZ
and Z/kZ if and only if j and k are coprime and m = jk, we can also write
any abelian group G as a direct product of the form

Zn ⊕ Z/d1Z⊕ Z/d2Z · · · ⊕ Z/dsZ

where di|di+1 for all i = 1 . . . , s − 1. The numbers n and d1, . . . , ds are
uniquely determined by G and they are called the invariants of G.
So the problem of the determining the group structure is equivalent to com-
pute the invariants d1, . . . , ds of G.
In order to solve this problem, we use the existence of relations among the
elements of a generating system and we suppose that G is finite so that n = 0.
Let g1, . . . , gr be a generating system of G. Since a finite abelian group is a
Z-module, we can consider a surjective Z-module homomorphism

ϕ : Zr −→ G

such that

(ρ1, . . . ρr) −→
r∏

i=1

gρi

i .

Let K be the kernel of ϕ. We have, from the fundamental theorem on
homomorphisms, that G ∼= Zr/K.
If (ρ1, . . . ρr) is an element of K we have

∏r
i=1 gρi

i = 1; this means that an
element of K allows us to write a relation among the generators g1, . . . , gr.
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So K is called the relation submodule of Zr relative to the generators
g1, . . . , gr. Since K is finitely generated (being a submodule of Zn), it admits
a generating system. So every element of this system can be seen as a column
of a matrix which we denote as A = (aij). This matrix has coefficients in Z
and is called the relation matrix for G. It depends on the generating sets
for G and K and also on the order of the elements in these sets.
Generating sets of the group G and of the relation submodule K are not
uniquely defined. Elementary row and column operations on A correspond
to changes of the set of generators.
The construction of the matrix A allows us to find the structure of G as
shows the following proposition:

Proposition 4.3. Let A be a relation matrix for a finite abelian group G. If
there are invertible matrices P and Q for which

PAQ =



a1 0 . . .

0 a2 0 . . .
... . . .

an

0 . . .


is a diagonal matrix and a1, . . . , an ∈ Z, then G ∼= Z/〈a1〉 ⊕ · · · ⊕ Z/〈an〉.

However in our algorithm we will obtain the structure of the group by
computing the Smith Normal Form of the matrix A.
We recall that a matrix A is in Smith Normal Form if there are nonzero
integers a1, . . . , an such that ai divides ai+1 for each i < m, and for which

A =



a1

. . .

am

0
. . .

0


.
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An important result is that every matrix with integer coefficients has a Smith
normal form and it is possible to write an algorithm to compute it. This
algorithm can be found in the book of H.Cohen [12].
A consequence is the following proposition which we are going to use in our
algorithm.

Proposition 4.4. Let A be a relation matrix for a finite abelian group. Let
D be the Smith normal form of A, with D = diag (d1, . . . , dk, 1, . . . , 1). Let
D = PAQ with P , Q invertible matrices. Then the following are true.

1. The order of G is | det A|.

2. The invariants of G are d1, . . . , dk.

In our algorithm we proceed as follows: at every step we find a minimal
relation among some given elements g1, g2, . . . , gr of the group. At the end
of the process this allows us to obtain the order of the group and a relation
matrix. Then we compute the Smith normal form of that matrix and so we
obtain also the structure of the group.

Description of the algorithm

Let us now describe the modification of Shanks’s algorithm to compute the
order of the group and its structure.
Suppose that we know an upper bound B of the order h of G. The idea
is to find relations

∏
i g

ai
i with 0 ≤ ai < Bi between given elements of the

group g1, . . . , gr. The bounds B1, . . . , Br are a subproduct of the algorithm
and they verify B = B1 ≥ · · · ≥ Br ≥ h.
The sequence of bounds is constructed inductively as follows.
At first set B1 = B and choose one element g1 at random.
At step 1 we compute the order of g1 which we denote as n1. Then, at step
2, we consider an other element g2 and we work with g1, g2 and with the
quotient group G2 = G/〈g1〉. The new bound is B2 = B1/n1 and, at the end
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of this step, we compute the order n2 of g2〈g1〉 in G2. This is equivalent to
a relation between g1 and g2.
At the step i we work with the elements g1, . . . , gi, with the group Gi =

G/〈g1, . . . , gi−1〉 and we will set Bi = B1/(
∏i−1

k=1 nk); in this case we obtain
the order of gi in Gi and therefore a relation between the elements g1, . . . gi.
At the end of the algorithm (where the criterion on where to stop will be
describe below) we obtain the order h of the group G as h =

∏
i ni and rela-

tions which we use to compute the structure of the group.
We are going to describe how it is possible to determine at every step mini-
mal relations between given elements of the group.
Suppose, for example, that at step i of the algorithm we want to determine
a minimal relation for the elements g1, . . . , gi−1, gi. We know, from the pre-
vious steps, that Bi = B1/(

∏i−1
j=1 nj).

1. For each baby-step gk
i with 1 ≤ k ≤

⌈√
Bi−1

⌉
, we compute every ele-

ment
i∏

j=1

g
−aj

j gk
i

with 0 ≤ aj ≤
⌈√

nj

⌉
and we check if it is equal to 1G; if it is , we

have found the minimal relation (a1, . . . , ai−1, k). If not, we sort these
elements in a list.

2. For each giant-step g
ld
√

Bi−1e
i with 2 ≤ l ≤

⌊√
Bi−1

⌋
+ 1 we compute

every element

g
ld
√

Bi−1e
i

i∏
j=1

gj
qjd√nje

with 1 ≤ qj ≤
⌈√

nj

⌉
+ 1 and we check if it is equal to 1G (in this

case we have found the minimal relation). If not, we search for it in
the above list; if it is found, the minimal relation is(

q1 · d
√

n1e − a1, . . . , qi−1 · d
√

ni−1e − ai−1, l ·
⌈√

Bi−1

⌉
− k
)

.
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By this algorithm we can compute also the structure of G by computing the
Smith Normal Form of the matrix whose columns are the relations above
obtained.
As we have remarked about the computation of the order of an element g, if
we know also a lower bound on the order of the group G we can improve the
algorithm.
Moreover the correctness of the result depends on the correctness of the
bounds which we know. That means that we have a probabilistic algorithm.
If, for example, we know that B/2 < C ≤ h ≤ B, we can give an easy
criterion on where to stop.
That is h ≥ C. In fact, if we have a multiple of h larger than h, i.e. αh with
α ≥ 2, it would be h/α ≥ C > B/2, that is h > B.

Pseudocode of the algorithm

Now let us give the pseudocode of the discussed above algorithm.
We will call it STRUCTURE-ORDER.
Let us suppose to be able to compute in the group G and we denote by · the
operation in G and by 1 the identity element of G.
In order to obtain the columns of the relation matrix, we must keep track
of all the exponents of the elements obtained during every step of the com-
putation. So we will use the two subsets S and L (respectively for the baby
steps and for the giant steps) of the group G which are constructed, at every
step, as a list of lists.
The elements of L and S, in fact, are composed of four fields; two fields
"info" in which we store the found element and its exponent, so those fields
will be denoted as "element" and "exponent"; and two fields "next", i.e. two
pointers, one at the next element and one at another list constructed at the
next step. For example we explain as we act for the list S.
At first this list is composed of only one element with 1 in the field "element",
0 in the field "exponent" and two pointers at NULL.
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During the step 1, we compute, for the chosen element g1, gr
1 for each

0 ≤ r ≤ q − 1 with q =
⌈√

B − C
⌉
, and we construct a new list whose

elements have 1 · gr in the field "element" and r in the field "exponent". So
we modify the list S by the construction of a pointer from its element to the
new list .
In the next step, for a new element g2, we compute gs

2 for each 0 ≤ s < q1

with q1 =
⌈√

n1

⌉
and we modify again S by the construction of a pointer

from each element gr
1 to a new list whose elements have gs

2 · gr
1 in the field

"element" and s in the field "exponent".
So, when in our algorithm a relation is found, we can obtain its elements,
going up again to the fields "exponent" of the lists S and L.
Moreover, at every step i of the algorithm, S · L represents the subgroup
〈g1, . . . , gi−1〉.

step 1
1

0
→ NULL

↓

step 2
g0
1

0
→ · · · →

gq−1
1

q-1
→ NULL

↓ ↓

step 3
g0
1 · g0

2

0
→ . . .

g0
1 · g

q1−1
2

1
→

gq−1
1 · g0

2

0
→ · · · →

gq−1
1 · gq1−1

2

1
→ NULL

STRUCTURE-ORDER(B, C)

Input: B and C such that B/2 < C ≤ h ≤ B.
Output: the order h of the group and the invariants.

1. set h = 1, C1 = C, B1 = B, S = {1}, L = {1}, n = 0, i = 1;

2. choose a random g in G;
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3. set A as a matrix of order log2 B with zero-elements;

4. while h < C;

5. SHANKS( B1, C1, S, L, h, A);

6. set h = hn;

7. i + +;

8. set B1 = bB1/nc, C1 = dC1/ne, q = d
√

ne, S =
⋃

0≤r<q gr ·S,
y = gq, L =

⋃
0≤a≤q ya · L;

9. SMITH NORMAL FORM(A);

10. print A;

11. return h.

The main part of that algorithm is the sub-algorithm called SHANKS.

SHANKS( B1, C1, S, L, h, A, i)

1. set q =
⌈√

B1 − C1

⌉
;

2. set x0 = 1, x1 = gh;

3. if x1 = 1;

4. set n = 1;

5. set n = hn;

6. set the i-th element of the i-th column of the matrix A

equal to n;

7. FACTOR(n, S, L, g, i);

8. return;
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9. else;

10. for 2 ≤ r ≤ q − 1;

11. set xr = x1 · xr−1;

12. compute the list of lists S1,r = xr·S in which we also

store the exponents of all the elements used until now;

13. for 0 ≤ r < q compute the list S1 =
⋃

0≤r<q S1,r and sort

S1;

14. if we find 1 ∈ S1,r and r > 0 ;

15. set n = r;

16. go up again, from the element 1, to the fields "exponent"

of the list S1,r and set the found values in the i-th

column of the matrix A;

17. FACTOR(n, S, L, g,i);

18. return;

19. else;

20. y = x1 · xq−1, z = xC1
1 , n = C1;

21. GIANT-STEPS(L, S1, n, z);

22. set n = hn;

23. FACTOR(n, S, L, g);

24. return.

The sub-algorithm GIANT-STEPS can be constructed as follows.

GIANT-STEPS(L, S1,n ,z, i)
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1. for each element w in the list L;

2. set z1 = z · w;

3. search for z1 in the list S1;

4. if we find z1 in S1,r;

5. set n = n− r;

6. set n = hn;

7. set the exponent of z equal to l; go up again to the

fields "exponent" of L from w and set the found values

equal to rj; go up again to the fields "exponent" of

S1,r from z1 and set the found values equal to sj; set

the elements of the i-th column of the matrix A equal

to lrj − sj

8. return;

9. else;

10. z = y · z;

11. n = n + q;

12. GIANT-STEPS(L, z, S1, n, i).

The subalgorithm FACTOR allows us to obtain the order of the element g

module the subgroup S · L.

FACTOR(n, S, L, g, i)

1. factorize n;

2. while p divides n;

3. compute S1 = gn/p · S;
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4. if exists z such that z is in L and z is in S1;

5. replace the elements of the i-th column of the matrix

A with the differences between the values obtained going

up again to the fields "exponent" from z1 in L and those

obtained going up to the fields "exponent" from z1 in

S1.

6. set n = n/p;

7. FACTOR(n, S, L, g, i);

8. else;

9. return.

Let us now study the complexity of our algorithm.
We remark that in SHANKS the total number of group operations (baby
steps, giant steps) is

O

(
m∏

j=1

(
√

nj)qm

)
=

 m∏
j=1

(
√

nj)
q√∏m
j=1 nj

 = O (q)

where qm is the value of q at step m, and the total number of arithmetical
operations (sorting, searching, etc...) is O (q log q) . Moreover the complexity
of FACTOR is O (q log q); so the complexity of SHANKS is also O (q log q).
This subalgorithm is performed for every new chosen element; so, since the
worst situation happens when all the elements of G have order equal to a
power of 2 and so the number of the used elements in the algorithm is log2 h,
we have that the complexity of STRUCTURE-ORDER is O

(
q log2(q)

)
.

4.3.3 Shanks’s method to compute Class Number

Let us now show to apply Shanks’s method to the class group.
To apply the method is necessary to use bounds for the class number.
From the Theorem of Correspondence, stated in Chapter 2, we know that
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the set of classes of quadratic forms is in a natural bijection with the class
group; so we can give a group structure to classes of quadratic forms.
In order to work with classes of forms we will consider reduced forms and
we are going to give an algorithm to find, given any quadratic form, the
unique reduced form in its class. An operation between classes of forms,
called composition, was introduced by Gauss in 1798.
The following definition of composition between two forms (representative of
two classes) is deduced from the product of ideals, using the isomorphism of
the Theorem of Correspondence.

Definition 4.2. Let f1 = {a1, b1, c1} and f2 = {a2, b2, c2} be two quadratic
forms with discrimininat D. Set s = (b1 + b2)/2, n = (b1 − b2)/2 and let u,
v, w and d be such that

ua1 + va2 + ws = d = (a1, a2, s),

and let d0 = (d, c1, c2, n). The composite of f1 and f2 is the form

{a3, b3, c3} =

(
d0

a1a2

d2
, b2 +

2a2

d
(v(s− b2)− wc2),

b2
3 −D

4a3

)
.

It is possible to give an algorithm to find the composition of two given
forms and so by this algorithm we are able to compute in the class group.

Algorithms for computation and reduction of positive definite forms

In Shanks’s method to compute class number we are going to use the algo-
rithms for reduction and composition of forms.
Let us now describe them.

REDUCTION(f)

Input: a positive definite form f = {a, b, c} of negative discriminant D.
Output: the unique reduced form in the equivalence class of f .

1. if −a < b ≤ a;
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2. while a > c;

3. set b = −b;

4. exchange a and c;

5. EUCLIDE(b, a, c);

6. if a = c and b < 0;

7. b = −b;

8. return {a, b, c};

9. else;

10. EUCLIDE(b, a, c);

11. while a > c;

12. set b = −b;

13. exchange a and c;

14. EUCLIDE(b, a, c);

15. if a = c and b < 0;

16. b = −b;

17. return {a, b, c}.

EUCLIDE(b, a, c)

1. find q and r such that b = 2aq + r with 0 ≤ r < 2a;

2. if r > a;

3. set r = r − 2a and q = q + 1;
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4. set c = c− 1
2
(b + r) and b = r;

5. return.

COMPOSITION(f1, f2)

Input: two primitive positive defined quadratic forms f1 = {a1, b1, c1} and
f2 = {a2, b2, c2} with discriminant D.
Output: the composite form f3 = {a3, b3, c3}.

1. if a1 > a2;

2. exchange f1 and f2;

3. set s = 1
2
(b1 + b2) and n = b2 − s;

4. if a1 divides a2;

5. set y1 = 0 and d = a1;

6. else;

7. compute u ,v and d such that ua2 + va1 = d = gcd(a2, a1);

8. set y1 = u;

9. if d divides s;

10. set y2 = −1, x2 = 0 and d1 = d;

11. else;

12. compute u ,v and d1 such that us + vd = d1 = gcd(s, d);

13. set x2 = u and y2 = −v;

14. set v1 = a1/d1, v2 = a2/d1, r = (y1y2n− x2c2 mod v1);
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15. set b3 = b2 + 2v2r, a3 = v1v2, c3 = (c2d1 + r(b2 + v2r))/v1;

16. reduce f = {a3, b3, c3};

17. return f.

Bounds for Class Numbers

Let us now deal with the question to give bounds for the Class Number. In
order to obtain a faster performance, we can use the Euler product expansion
of the L-function LD(1).
In fact we have the following result.

Proposition 4.5. Assuming the Generalized Riemann Hypothesis (GRH),
when P →∞,

h(D)− h̃ = O(h̃P−1/2 log(P |D|))

where

h̃ =

√|D|
π

∏
l≤P

(
1−

(
D
l

)
l

)−1
 .

For example Shanks showed experimentally that the error is very small
when P is equal to 217.
In order to prove this proposition we use the following lemmas.

Lemma 4.2. If u → 0,

− log(1− u) = u + O(u2).

Lemma 4.3. If u → 0,
eu = 1 + O(u).

Lemma 4.4. [20] Under GRH, if χ is a real non principal character mod D

and D a discriminant of an imaginary quadratic field,∑
l<T

χ(l) log(l) �
√

T log2(|D|T ).
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Lemma 4.5. If χ is a real non principal character and P is a large number,∏
l>P

l prime

(
1− χ(l)

l

)−1

− 1 �
∑
l>P

l prime

χ(l)

l
+ O

(
1

p

)
.

Proof. If we set k = χ(l)
l

, we can write

∏
l>P

l prime

(1− k)−1 − 1 = exp

 ∑
l>P

l prime

− log(1− k)

− 1.

From Lemma 4.2 we have

exp(
∑
l>P

l prime

− log(1− k))− 1 = exp

 ∑
l>P

l prime

k + O

 ∑
l>P

l prime

1

l2


− 1

and, from Lemma 4.3,

exp

 ∑
l>P

l prime

k + O

 ∑
l>P

l prime

1

l2


−1 =

(
1 + O

(
1

P

))1 + O

 ∑
l>P

l prime

k


−1

= O

 ∑
l>P

l prime

k

+ O

(
1

P

)
+ O

 1

P

∑
l>P

l prime

k

�
∑
l>P

l prime

χ(l)

l
+ O

(
1

P

)
.

Proof. (of Proposition 4.5)
We have

|h(D)− h̃| =

∣∣∣∣∣h̃
(∏

l>P

(
1− χ(l)

l

)−1

− 1

)∣∣∣∣∣ ,
so our thesis is equivalent to∏

l>P

(
1− χ(l)

l

)−1

− 1 � log(P |D|)√
P

.

From Lemma 4.5 we have that∏
l>P

(
1− χ(l)

l

)−1

− 1 �
∑
l>P

χ(l)

l
+ O

(
1

P

)
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so we can use partial summation to obtain∑
l>P

χ(l)

l
+ O

(
1

P

)
� −

∫ ∞

P

∑
P<l≤t

χ(l) log(l)d

(
1

t log t

)
+ O

(
1

P

)
.

Since
d

(
1

t log t

)
=
− log t + 1

t2 log2 t
� 1

t2 log t

and from Lemma 4.4, we have

−
∫ ∞

P

∑
P<l≤t

χ(l) log(l)d

(
1

t log t

)
+ O

(
1

P

)
�

∫ ∞

P

(√
t log2(|D|t)−

√
P log2(|D|P )

t2 log t

)
dt + O

(
1

P

)
� log(P |D|)√

P
.

Description and pseudocode of the algorithm

Now we have the information to apply Shanks’s method to the Class Group.
We remark that we can improve the computation by noticing that the inverse
of a form {a, b, c} is {a,−b, c}, so in our algorithm we can double the number
of giant steps and set q =

√
(B − C) /2.

Moreover, as in the above algorithm STRUCTURE-ORDER, at every step we need
to choose a random element of the group to start the computation; in our
case we will act in the following way: we consider, in the computation of the
Euler product, the first primes p such that

(
D
p

)
= 1 and we compute bp such

that b2
p ≡ D(mod4p), then, at every new step of the algorithm, we take as a

new element the form {p, bp, cp} where cp =
(
b2
p −D

)
/(4p). So we can also

say that the algorithm fails to give an answer when the number of the made
steps, denoted as c, becomes larger than the number of the chosen random
elements.
We note that the following one is an heuristic algorithm because, as we have
outlined for STRUCTURE-ORDER, the result depends on the correctness of the
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known bounds in Proposition 4.5 and in this case we have found our bounds
under the assumption of the GRH. So our output may be false and we should
use other methods to verify its correctness .

CLASS-NUMBER(D)

Input: D.
Output: h(D).

1. set P = max(218, |D|1/4);

2. compute

Q =

√|D|
π

∏
p≤P

1−

(
D
p

)
p

−1
 ;

3. set B =
⌊
Q(1 + 1/(2

√
P ))
⌋

and C =
⌈
Q(1− 1/(2

√
P ))
⌉
;

4. for the first b values of the primes p such that
(

D
p

)
= 1

compute bp such that b2
p ≡ D(mod4p);

5. set fp =
{
p, bp, (b

2
p −D)/(4p)

}
;

6. set e = 1, c = 0, B1 = B, C1 = C, Q1 = Q;

7. while e ≤ B − C;

8. set g = fp;

9. set c = c + 1 and q =
⌈√

(B1 − C1)/2
⌉
;

10. x0 = 1 and x1 = ge;

11. for 2 ≤ r ≤ q − 1;

12. xr = x1 · xr−1;

13. if xr = 1;
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14. set n = r;

15. n =ORDER(g, n);

16. set e = en;

17. else;

18. sort the xr in a list S;

19. set y = x1 · xq−1, y = y2, z = xQ1

1 and n = Q1;

20. n =GIANT-STEP2(z, S, n);

21. set e = en;

22. if c ≥ b;

23. output a message saying that the algorithm fails

to find h(D);

24. else;

25. set B1 = bB1/nc and C1 = dC1/ne;

26. set h = e bB/ec;

27. return h.

ORDER(g, n)

1. factorize n;

2. while p divides n;

3. if x
n/p
1 = 1;
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4. set n = n/p;

5. return n.

GIANT-STEP2(z, S, n, y)

1. for 0 ≤ r < q

2. search for z or z−1 in the list S;

3. if we find z = xr;

4. set n = n− r;

5. return n;

6. if we find z−1 = xr;

7. set n = n + r;

8. return n;

9. else;

10. set z = y · z and n = n + 2q;

11. GIANT-STEP2(z, S, n, y).

We remark that we can modify this algorithm to obtain the structure of
the Class Group as we have seen in STRUCTURE-ORDER.
Even the complexity of this method is obtained from that of STRUCTURE-ORDER,
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recalling that, from the Theorem of Siegel, when D is negative, h(D) grows
as |D|1/2. So the algorithm CLASS-NUMBER allows us to compute h(D) in time
O
(
|D|1/4 log2(|D|1/4)

)
.

4.4 Sub-exponential Algorithms

4.4.1 Mc Curley’s Algorithm

Let us now describe other faster algorithms to compute Class Numbers .
In particular we will deal with the sub-exponential algorithm by Mc Curley

in 1988 and the variant of this method found by Atkins.
The idea of these methods , as in Shanks’s, is that of finding relations between
the elements of the class group, i.e. between reduced forms, but, unlike the
previous method, at every step of this algorithm we are going to find multi-
ples of the class number instead of divisors. Let us explain the theory used
to obtain this result.
As in the above algorithm, let us consider a set P of primes such that

(
D
p

)
= 1

and, for each p ∈ P, we find reduced forms fp = {p, bp, cp}, called prime

forms. Then we use a very important result, depending on the Generalized
Riemann Hypothesis (GRH).

Lemma 4.6. Under the assumption of the GRH, there exists a "computable"
constant c such that if

P =

{
p prime such that

(
D

p

)
= 1 and p ≤ c log2 |D|

}
then the class group is generated by the forms fp where p ∈ P.

So, if we denote by n the order of P, we can consider the following sur-
jective group homomorphism :

ϕ : Zn −→ Cl(D)
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(αp)p∈P −→
∏
p∈P

fαp
p .

Let Λ denote the kernel of ϕ, we have that Λ is a submodule of Zn and it
is just the submodule of the relations among the fp’s. Moreover, from the
fundamental Theorem of homomorphisms, it follows that

Zn/Λ ∼= Cl(D)

and, from the properties of the Z-modules,

h(D) = | det(Λ)|.

So, whenever we find a system of n independent elements of Λ, we find a
multiple of | det(Λ)|, hence a multiple of h(d).
Now the question is how to determine the relations among the fp.

Again from the Theorem of Correspondence of Chapter 2, we have the fol-
lowing lemma.

Lemma 4.7. Let {a, b, c} a primitive positive defined quadratic form of neg-
ative discriminant D. Let’s consider the prime decomposition of a, that is
a =

∏
p pvp. If fp is the prime form corresponding to p we have the following

equivalence
{a, b, c} =

∏
p

f εpvp
p

where εp = ±1 is defined by the congruence

b ≡ εpbp(mod2p).

Using this result, in order to generate relations in Λ, we act in the follow-
ing way:

• choose random integers ep;

• compute the reduced form {a, b, c} equivalent to
∏

p∈P f
ep
p ;

• compute all the factors of a;
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• if they are in P, a relation is found;

• otherwise we choose other exponents ep;

• when the form is kept we obtain the relation∏
p∈P

f ep−εpvp
p = 1.

If the set P is chosen in an appropriate way, by this method we "hope" to
obtain Λ.
Mc Curley showed that, if we set P =

{
p ≤ P,

(
D
p

)
6= −1

}
, to optimize the

algorithm we could choose

P = max
(
6 log2 |D|, L(|D|)1/

√
8
)

where L(x) is a function defined as

L(x) = e
√

log x log log x.

Let us now give the pseudocode of the algorithm without explaining the
tecniques to reduce the size of the relation matrix and to compute its deter-
minant.

Mc-Curley(D)

Input: a fundamental negative discriminant D.
Output: the Class Number h(D) and the invariants of the Class Group
Cl(D).

1. Set m = 6 log2(|D|) and M = L(|D|)1/
√

8;

2. set P = bmax(m, M)c;

3. set P =
{

p prime such that p ≤ P,
(

D
p

)
6= −1 and p not divides D

}
;
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4. compute the product

B =

√|D|
π

∏
p≤P

1−

(
D
p

)
p

−1
 ;

5. set n equal to the number of p ≤ P;

6. set k = 0;

7. for the primes p in P;

8. do;

9. compute the forms fp as in Shanks’ method;

10. choose random integers exponents ep;

11. compute the reduced form {a, b, c} equivalent to
∏

p∈P f
ep
p ;

12. factorize a;

13. if a prime factor of a is larger than P;

14. choose other exponents and repeat the steps 9-10;

15. else, i.e. if a =
∏

p≤P pvp;

16. k = k + 1;

17. set the elements of the found relation in the k-th

column of a matrix A;

18. calculate the determinant of the matrix A;

19. set h = det(A);

20. if h ≥ B
√

2;

21. return to step 10 ;
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22. else;

23. return h;

24. compute the Smith Normal Form B of the matrix A;

25. return the diagonal elements of B which are the invariants

of Cl(D).

As already mentioned, this method is much faster than the previous one
over large discriminants; in fact we can prove that, if we use appropriate
tecniques to compute the determinant of A and its Smith Normal Form, the
expected asymptotic average running time is

O
(
L (|D|)

√
9/8
)

.

4.4.2 Atkin’s Algorithm

An improvement of the above method has been given by Atkin. It is faster
over all prime discriminants but it does not always gives the class group.
The idea of this method is similar to that of the previous one, i.e. it is based
on finding relations among prime forms, but in this case we work with a
single form denoted as f .
In order to obtain the order of the group, we find the order of the form f in
the class group. Let’s denote as n the number of prime forms in the factor
base P; we compute the reduced forms equivalent to f, f2, f3, . . . and then
we try to find relations, as in the previous algorithm, until n + 1 of them
have been found.
We denote as e1, e2, . . . , en+1 the exponents of the form f for which we have
found a relation. So we have a matrix n × (n + 1) by which, computing its
kernel (by a simple linear algebra method), we are able to obtain minimal
relations. As soon as we find a non-trivial relation, i.e. when we have fN = 1
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where N =
∑

1≤i≤n+1 xiei and N is not zero, we can compute the order of f

using a method similar to the subalgorithm FACTOR in Shanks’s algorithm.
Let us denote as e the order of f ; so e is a divisor of the class number h.
Now we can give a stopping criterion, using Euler product, in the following
way: assuming GRH, we check if e statisfies the inequalitity:

e >
1√
2

√
|D|
π

∏
p≤P

1−

(
D
p

)
p

−1

;

if it does, we have e = h(D) and f is a generator of the class-group which is
cyclic. If e does not statisfies the above inequality we must choose another
form and we must repeat the algorithm.
We remark that this method is faster than Mc Curley’s when the class group
is cyclic. So we ask when this happens. We know that if D is a prime the
class number is odd and, according to Cohen-Lenstra Heuristics, stated in
the previous chapter, the probability that the odd part of the class group is
cyclic is greater than 97%. So, when D is a prime, the class group is often
cyclic and so our algorithm is very efficient. Moreover we know that the
number of generators of a cyclic group of order h is ϕ(h); since this number
is quite large, we have a good chance that the chosen form f is a generator
of the group.

4.5 Recent Results

In the last years many authors have given variants of the algorithm de-
scribed above and have enabled the computation of Class Number of dis-
criminants with more than 100 decimal digits. In 1997 Buchmann, Jacobson
and Teske [6] improved and implemented Shanks’s method; their algorithms
have the advantage that no upper bound on the group order is needed. How-
ever all of these results are given under the assumption of the Generalized
Riemann Hypothesis, in the sense that the result are not known to be correct
without it. On March 21, 2006, Andrew Booker [5] published an article in
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which he combined Buchmann’s algorithm for Class Number of quadratic
fields, with analytic methods to give an unconditional algorithm whose run-
ning time is O(|d|1/2+ε), and O(|d|1/4+ε), if GRH is true. He used this method
to show that h(d) = 43 for d = 1031 +33; this computation required 95 hours
using a 500 Mhz UltraspareII.
The most recent work we refer is the paper of M.J. Jacobson, S. Ramachan-
dran and H.C. Williams [26], which will be discussed in the Proceedings of
the 7th Algorithm Number Theory Symposium (ANTS VII) at the end of
July. In this work, the authors, using an improvement of Shanks’s method,
compute the Class Number and the Class Group structure of all imaginary
quadratic fields with discriminant d for 0 < |d| < 1011. The correctness of
their algorithm is again conditional on GRH, but they verify the obtained
results unconditionally using a new verification algorithm which is very effi-
cient. The total running time of this method is O(|d|1/4) steps for discrimi-
nant. The computations required about 6 days and the verification 8 days.
The importance of this work is also given by the fact that the obtained data
provides evidence for the Cohen-Lenstra heuristics and Littlewood’s bounds
on L(1, χ), stated in Chapter 3.
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4.6 Numerical Results

TABLE 1. Class Number of forms with discriminant −d for 1 ≤ d ≤ 34.

d h(d) d h(d)

163 1 48427 18

427 2 38707 19

907 3 58507 20

1555 4 61483 21

2683 5 85507 22

3763 6 90787 23

5923 7 111763 24

6307 8 93307 25

10627 9 103027 26

13843 10 103387 27

15667 11 126043 28

17803 12 166147 29

20563 13 134467 30

30067 14 133387 31

34483 15 164803 32

31243 16 222643 33

37123 17 189883 34
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TABLE 2. Invariants of Class Groups of some imaginary quadratic fields
with discriminant D.

D 4× (227
+ 1)(40)

h(D) 17787144930223461408

Cl(D) [2 8893572465111730704]

D −(4× 1054 + 4)(55)

h(D) 1056175002108254379317829632

Cl(D) [2 2 2 2 2 33005468815882949353682176]

D −56759029509462061499204078404947821190422701840487390196283(59)

h(D) 34708563502858399116135176220

Cl(D) [34708563502858399116135176220]

D −(4× 1064 + 4)(65)

h(D) 178397819605839608466892693850112

Cl(D) [4 4 11149863725364975529180793365632]
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