Topological degree theory and VMO maps

EMILIANO DI FILIPPO

Let X and Y be two oriented manifolds, let f : X — Y be a continuous function
and let y be a given point in Y; we can associate to f an integer, which we call
d(f, X,y), such that:

dl)d@id, X,y) =1 Vy e X.
d2)
d(f, X,y) = d(f, X1,y) + d(f, X2, y)

whenever X; and X, are disjoint open subsets of X, such thaty ¢ f(X \ (X; U X3)).
d3) d(h(t,.), X, y(?)) is indipendent of t € J = [0, 1] whenever 4 : J X X — Y and
y(t) : J — Y are continuous and y(¢) ¢ h(t,0X) for all ¢ € J; in other words, the
degree is homotopy invariant.

dh) Ifd(f, X,y) # 0= f1(y) # 0.

dS) d(f, X, y) is continuous in f and y. In particular, if X is without boundary and
Y is connected, it does not depend on y € Y; hence we can write d(f, X,y) =
d(f, X, Y).

e These properties make of the degree a useful tool to study equations of the form
f(x) = y. Tipically, analysts use degree in the following way. If they want to
prove that the equation f(x) = y has solutions, then they look for a > simple ” map
g homotopic to f; if they can prove that d(g, X,y) # 0, then f(x) = y has at least a
solution by d3) and d4).

e In 1995 H. Brezis and L. Nirenberg have shown that the continuity property 5)
is still true in the BMO topology; namely if f and g are continuous maps and
distgpo(f, g) is sufficiently small, then d(f, X, y) = d(g, X, y). Using this fact, they
extended the definition of degree to the space VMO, the completion of continuous
maps in the BMO-norm.

e Now we recall the definition of the space BMO, Bounded Mean Oscillation: Let



Qo be a cube in R”, and let f € L'(Qy); we set

ch(x)dx = Lff(x)dx and ]_”Q = JCf(x)dx,
. 01 Jo ]

We say that f € BMO(Qy, R) if for every cube Q C O, we have that

1 llssrocguzo = Sup f 1 (0) = Foldx < co. 0
QcQp JO

It is easy to see that || fllzrmo(g,,r) 15 @ seminorm; we define the BMO-norm of f by

A1~ = N1flsmoco,ry + I1f1lLr-

The space BMO is complete under this norm.

Let us look at some properties of BMO.

e Directly by the definition, we get that L € BMO; on the other hand in sec-
tion 2.3 we shall prove the John-Nirenberg inequality which implies that, if f €
BMO(Qy, R) and ¢ > 0 then

o
{x € Qo : |f ()| > t}] < creMamo|Qy|
for some constants ¢; and ¢,. As a consequence we have that
BMO c L? ¥p > 1.

In particular,
L® < BMO — L” Vp > 1.

e The space BMO is strictly larger than L™, indeed we shall see in section 2.3 that
the function log |x| € BMO \ L.

e Concerning VMO, its name comes from Vanishing Mean Oscillation; indeed,
a theorem of Sarason (section 2.4) implies that f € VMO iff a stronger property
than (1) holds, i.e iff, denoting by Q(x, €) the cube centered in x with side € we
have

ling |f(x)— ]_‘Q(xae)ldx — 0 uniformly in x.
Y Joxe)



It is easy to see that L*(Qy,R) € VMO(Qy, R), indeed, an easy calculation
showes that the function 1o ;) does not satisfy the formula above for Qy = (-1, 1).
But of course C°(Q,R) ¢ VMO(Q, R). In Section 2.6 we show that the inclu-
sion is strict. The example is the function f(x) = log|log|x|| which belongs to
VMO(Q, R) for any Q a bounded domain in R” containing the origin. On the
other side, VMO is strictly containeed in BMO, because we shall see in section
2.6 that f(x) = log|x| ¢ VMO.

e Let Q be a bounded open domain in R”; some important spaces which embed
in VMO(Q) are :

Wh(Q) = {f e L'(Q) : Vf € L'(Q)}

WP(Q) = { fel(Q): f f dedy < oo} (2)
QJQ

PR

and

forall0 < s < 1,1 < p < oo with sp = n, ( see Section 2.6).

Definition 2 is Gagliardo’s characterization of the Sobolev space with fractional
exponent.

e Naturally the definition of BMO and VMO can be extended to a function in
L'(Qo, R™). In other words f € BMO(Q,, R") (VMO(Q,, R")) if each component
of fis BMO(Qy, R) (VMO(Qy, R)).

e [et X be a smooth n-dimensional connected compact Riemannian manifold
without boundary, we shall see in section 2.1 that we can define BMO(X, R")
and VMO(X, R").

e Finally let Y be a compact manifold without boundary; we shall always suppose
that Y is smoothly embedded in some R”. We say that f belongs to BMO(X, Y)
(VMOX, Y)),if f € BMO(X,R") (VMO(X,R")) and f(x) € Y a.e.

e We shall see in section 2.2 that a different choice of the Riemannian metric on
X or of the embedding of Y yields an equivalent metric.

e Given a manifold Y embedded in R”, in a neighbourhood of Y we can define a
projection operator, which associates to y € R" the unique point on Y closest to y.
If feVMO(X,Y), for € > 0 small, we can define

fox) = fO)do(y) and f.(x):= Po f(x).

Be(x)



Since f, is a continuous map, d(f., X,y) is well defined Vy € Y. If X, Y are
manifolds without boundary and Y is connected, we have by dS) that d(f, X, y)
does not depend on y € Y, hence d(f.,X,y) = d(f.,X,Y). We note that, if € is
small d(f., X, Y) does not depend on € € (0, ). To show this we use the fact that
the degree is invariant by homotopy; in particular using the deformation fie,(1—ye»
for €, € small, 0 < ¢t < 1, we see that d(f., X, Y) = d(fo, X, Y). Thus we can define

d(f,X,Y) := lir%d(fﬁ,X, Y). 3)

e We shall see in section 4.1 that the definition 3 is indipendent of the choice of
Riemannian metric on X and of the embedding of Y.
e Some properties of VMO-degree are :
1)d@id, X,Y) = 1.
2)Let f € VMO(X,Y). Then there exists 6 > 0 depending on f, such that if
g€ VMO(X,Y) and

dist(f,g) <9,

then
d(f,X,Y)=d(g,X,Y).

3)Let H,(-) be a one parameter family of VMO maps X to Y, depending continu-
ously in the BMO topology, on the parameter t. Then d(H,(-), X, Y) is indipendent
of t.

4) It d(f, X, Y) # O then the essential range of f is Y. We define the essential range
to be the smallest closed set £ in Y such that f(x) € Z a.e.

eRecall that if £ and g € C°(X, Y), there is a uniform § > 0 such that

lf —glco <0 =d(f,X,Y)=4d(g,X,Y).

Surprisingly if f and g € VMO(X,Y), 6 depends on f. In Chapter 4 we give an
example building two maps f, g from S! to S arbitrarily close in the H2(S")
topology, and thus in BMO topology, but with different degrees.

e One can ask whether it is possible to define the degree for maps in L(X,Y),

I < p < 400, and BMO(X,Y). The answer is negative; indeed in Section 4.1 we
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prove that these spaces are arcwise connected.
e In section 1.8 we recall that if f € C'(X,Y), then

d(f,X,Y) = 1 f det J (x)dor(x) (4)
1Yl Jx

where |Y| denotes the volume of Y.

But we have seen that W'"(X,Y) — VMO(X,Y), and the integral above, con-
verges for f € W!"; we show in section 4.2 that (4) holds when f € W' and d is
the VMO degree.

oIf X =Y =S", where §" is the sphere of R", a famous theorem of Hopf says that
two maps in C°(S", S") are homotopic iff they have the same degree. In section
4.1 we show that this holds also for VMO maps.

e An interesting case is when we consider f € Hz(S') = W2%(S!,S"). From

Gagliardo’s characterization we have

2
Hz(S)—{feLz(S) ff'f(ﬁ gg)' a’xdy<+oo}.

We also recall the characterization of H %(S 1) in terms of the Fourier coefficents
() of f:
+0o0
H%(S‘):{feLz(s‘): DA+ Dlf < +oo}. (5)
Finally we recall that if £ € C'(S',S"), by a well-know formula of complex
analysis we have that
1 (dz 1 (7 f'(e) 1 [

d(f,s", S)—zm T T i f(e) 0=7- ; [ @O f©)do  (6)

where we have used the fact that (10) ?(9) because || /()| = 1.

Now we consider the Fourier expansion of f :

£ = i Fue™.



Inserting it into 6, we find

1 +00 — . +o00 . ) +00 R
d(f.s',s") = 2—mf [Z Fre™ > im)fue™ |do = > nlhP. ()
S! o

n=-— m=—0oo0 n=—0oo

The density of C'(S',S") into H2(S',S") and the continuity of the degree yield
that formula (7) holds also when f € H2(S!,S1).
oThis fact has a surprising consequence :

Let (a,) be a sequence of complex numbers satisfying

+0o0
D Inlla,P < +oo (8)

n=—oo

Eikm2=l ©)

and .
Z G =0 Yk # 0 (10)
Then
+00
Z nla,* € 7 (11)

o If f is only continuous, the series 7 is not convergent, but the Fourier coefficents
still exist.
One problem proposed by Brezis is whether one can hear the degree of continuous

maps. In other words, if f and g are continuous maps and
fol = 184l Vn € Z

can one conclude that d(f,S',S') = d(g,S', S ?

J. Bourgain and G. Kozma [5] have shown that the answer is negative. They have
constructed a complicated example of two continuous maps f and g of the circle
to itself with | f,,l = |g,| Vn € 7Z but with different degree.
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