PFB - Tutorato 1

Tutore: Dott. Giulio Pellitta

25 settembre 2008

ANALISI

Esercizio 1 (PFB 23/06/04, n. 1.3). Sia $a \in \mathbb{R}$, con a > 0. **Esercizio 5** (PFB 02/02/05, n. 2.4). Un anello A si dice *Dimostrare che l'equazione*

$$\frac{1}{1+x^{10}} = \frac{1}{a} \int_0^a \frac{\mathrm{d}t}{1+t^{10}}$$

ha un'unica soluzione positiva, x_a . Dimostrare che $x_a \in [0, a]$. Calcolare i limiti

$$\lim_{a\to 0^+} x_a \qquad \lim_{a\to 0^+} \frac{x_a}{a}.$$

Esercizio 2 (PFB 07/10/05, n. 1.5). Si consideri la funzione $f: \mathbb{R}^3 \to \mathbb{R}$

$$f(x, y, z) = x^3 + y^3 + z^3 - 3xyz.$$

1) Dimostrare che f vincolata a

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1, \quad x \ge 0, y \ge 0, z \ge 0\}$$

ammette massimi e minimi.

- 2) Dimostrare che f ammette un unico punto critico all'interno della superficie T.
- 3) Studiare f vincolata a

$$T \cap \{(x, y, z) : z = 0\}$$

e dimostrare che P è il punto di minimo assoluto di f, mentre i punti di massimo stanno sull'intersezione di P con i piani coordinati.

4) Dimostrare che

$$f(\lambda x, \lambda y, \lambda z) = \lambda^3 f(x, y, z).$$

5) Usando i punti 3) e 4), dimostrare che, se $x \ge 0$, $y \ge 0$, $z \ge 0$ 0, allora

$$x^3 + y^3 + z^3 \ge 3xyz.$$

Esercizio 3 (PFB 03/10/07, n. 1.4). Un nuotatore si trova nel punto A sulla sponda di un lago perfettamente circolare di raggio 2 km e vuole raggiungere il punto C diametralmente opposto ad A. Il suo piano è nuotare in linea retta fino a un punto B sulla sponda alla velocità di 2 km/h, e poi correre lungo l'arco BC alla velocità di 4 km/h. Quale punto B rende minimo il tempo del suo tragitto?

Esercizio 4 (PFB 30/10/08, n. 1.3). Determinare la convergenza delle serie

$$\sum_{n\geq 1} \left[e^{\frac{1}{n^2}} - 2\cos\frac{1}{n} + 1 \right]$$
$$\sum_{n\geq 1} \left[e^{\frac{1}{n^2}} - 2\cosh\frac{1}{n} + 1 \right].$$

GEOMETRIA

booleano se ogni elemento di A è idempotente, cioè $a^2 = a$, per ogni $a \in A$.

- Sia A un anello booleano unitario. Mostrare che:
 - (1) 2a = 0, per ogni $a \in A$ (cioè A ha caratteristica 2);
 - (2) Se $a \neq 0, 1$, allora a è uno zerodivisore di A;
 - (3) ab = aba = ba, $per ogni a, b \in A$, in particolare A è commutativo;
 - (4) A è integro se e soltanto se A è un campo con 2 elementi;
- Sia X un insieme. Mostrare che l'insieme delle funzioni

$$\mathbb{Z}_2^X := \{ f : X \to \mathbb{Z}_2 \}$$

dotato delle operazioni di addizione e moltiplicazione puntuale:

$$(f+g)(x) = f(x)+g(x); (fg)(x) = f(x)g(x), per ogni x \in X$$

è un anello unitario booleano.

Esercizio 6 (PFB 02/02/05, n. 2.5). I punti $A = (\frac{1}{2}, 0, \frac{\sqrt{3}}{2})$ e $B=(-\frac{1}{2},0,\frac{\sqrt{3}}{2})$ giacciono sulla sfera uniaria $S^2\subset\mathbb{R}^3$ e sono situati entrambi sul 60° parallelo – cioè sul cerchio di equazione $z = \frac{\sqrt{3}}{2}$, il cui raggio è $r = \cos \frac{\pi}{3}$.

- 1. Calcolare la distanza \mathbf{l}_1 tra A e B in \mathbb{R}^3 .
- 2. Calcolare la lunghezza l₂ dell'arco di 60° parallelo tra A e
- 3. Usando il prodotto scalare $A \cdot B$ calcolare la lunghezza l_3 dell'arco di cerchio massimo – cioè centrato nell'origine di \mathbb{R}^3 e quindi di raggio 1 – che passa per A e B.
- 4. Ordinare l_1 , l_2 e l_3 .

Esercizio 7 (PFB 03/10/06, n. 2.3). Mostrare che i punti $A = (\frac{1}{2}, -\frac{1}{2}, 0) \ e \ B = (\frac{\sqrt{3}}{4}, -\frac{\sqrt{3}}{4}, \frac{1}{\sqrt{8}}) \ giacciono \ su \ una \ stessa$ circonferenza centrata nell'origine dello spazio Euclideo \mathbb{R}^3 . Calcolare la lunghezza dell'arco AB...

Esercizio 8 (PFB 13/06/07, n. 2.1). Sia G il gruppo moltiplicativo delle unità di Z₁₅. Determinare tutti i sottogruppi di G e mostrare che G è prodotto diretto interno di due suoi sottogruppi.