II Esonero di AC310 - 20/12/2012 Soluzioni

Docente: Prof. Pierpaolo Esposito

Esercizio 1 Scrivendo $f(z) = \frac{36}{z^2} \left[\frac{1}{z+2} - \frac{1}{z+3} \right]$, dallo sviluppo della serie geometrica otteniamo

$$f(z) = \frac{36}{z^2} \left[\sum_{n=0}^{\infty} (-1)^n \frac{z^n}{2^{n+1}} - \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{3^{n+1}} \right] = \sum_{n=-2}^{\infty} (-1)^n \left[\frac{36}{2^{n+3}} - \frac{36}{3^{n+3}} \right] z^n \quad 0 < |z| < 2,$$

$$f(z) = \frac{36}{z^2} \left[\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{z^{n+1}} - \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{3^{n+1}} \right] = 36 \sum_{n=-\infty}^{-3} (-1)^{n+1} \frac{z^n}{2^{n+3}} - 36 \sum_{n=-2}^{\infty} (-1)^n \frac{z^n}{3^{n+3}} \quad 2 < |z| < 3,$$

 ϵ

$$f(z) = \frac{36}{z^2} \left[\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{z^{n+1}} - \sum_{n=0}^{\infty} (-1)^n \frac{3^n}{z^{n+1}} \right] = \sum_{n=-\infty}^{-4} (-1)^{n+1} \left[\frac{36}{2^{n+3}} - \frac{36}{3^{n+3}} \right] z^n \quad |z| > 3.$$

Esercizio 2 Siano $P_+ = Re^{i\epsilon}$ e $P_- = Re^{i(2\pi-\epsilon)}$, ove R > 0 grande e $\epsilon > 0$ piccolo. Sia $\Gamma_{R,\epsilon}$ la curva chiusa ottenuta dall'unione del segmento $[0,P_+]$, con l'arco di circonferenza γ da P_+ a P_- in senso antiorario e con il segmento $[P_-,0]$. Usiamo il Teorema dei Residui con $f(z) = \frac{z^{\frac{1}{3}}}{1+z^2}$ su $\Gamma_{R,\epsilon}$, che ha poli semplici in $z = \pm i$ con residui

$$\operatorname{Res}\ (f;i) = \frac{i^{\frac{1}{3}}}{2i} = -\frac{1}{2}e^{i\frac{\pi}{6}}i = -\frac{1}{2}e^{i\frac{2\pi}{3}} \quad \operatorname{Res}\ (f;-i) = -\frac{(-i)^{\frac{1}{3}}}{2i} = \frac{1}{2}e^{i\frac{\pi}{2}}i = -\frac{1}{2}.$$

Pensiamo la funzione $z^{\frac{1}{3}}$ definita come $|z|^{\frac{1}{3}}e^{i\frac{\theta}{3}}$ se $z=|z|e^{i\theta}$. Abbiamo che

$$\int_{[0,P_+]} f(z)dz = \int_0^R \frac{x^{\frac{1}{3}}e^{i\frac{\epsilon}{3}}}{1+x^2e^{2i\epsilon}}dx \to \int_0^R \frac{x^{\frac{1}{3}}}{1+x^2}dx,$$

e

$$\int_{[P_-,0]} f(z) dz = - \int_0^R \frac{x^{\frac{1}{3}} e^{i\frac{2\pi - \epsilon}{3}}}{1 + x^2 e^{2i(2\pi - \epsilon)}} dx \to - e^{i\frac{2\pi}{3}} \int_0^R \frac{x^{\frac{1}{3}}}{1 + x^2} dx$$

per $\epsilon \to 0$, mentre uniformemente per ϵ piccolo:

$$|\int_{\gamma_R} f(z)dz| \leq 2\pi R \frac{R^{\frac{1}{3}}}{R^2-1}.$$

Passano poi al limite $R \to +\infty$, dal Teorema dei Residui otteniamo che

$$(1 - e^{i\frac{2\pi}{3}}) \int_0^\infty \frac{x^{\frac{1}{3}}}{1 + x^2} dx = -\pi i [e^{i\frac{2\pi}{3}} + 1],$$

e quindi

$$\int_0^\infty \frac{x^{\frac{1}{3}}}{1+x^2} dx = -\pi i \frac{e^{i\frac{2\pi}{3}}+1}{1-e^{i\frac{2\pi}{3}}} = \pi \frac{\sqrt{3}}{3}.$$

Esercizio 3 Il polinomio $Q(z)=z(z^3-6)$ ha quattro radici semplici in |z|<2, ossia $0,\sqrt[3]{6},\sqrt[3]{6}e^{\frac{2\pi i}{3}},\sqrt[3]{6}e^{\frac{4\pi i}{3}}$. Dato $P(z)=z^4-6z+3$, abbiamo che

$$|Q(z)| \ge |z|(6 - |z|^3) = 5 > 3 = |P(z) - Q(z)|$$
 per $|z| = 1$

e

$$|Q(z)| \ge |z|(|z|^3 - 6) = 4 > 3 = |P(z) - Q(z)|$$
 per $|z| = 2$,

e dal Teorema di Rouché otteniamo che P ha uno zero in |z| < 1 e tre zeri (contati con molteplicitá) in 1 < |z| < 2. Poiché $P'(z) = 2(2z^3 - 3)$ si annulla nelle radici terze di $\frac{3}{2}$ che non sono zeri di P(z), otteniamo che gli zeri di P(z) sono semplici, ossia P(z) ha tre radici semplici in 1 < |z| < 2.