Esecitazione AM3 n.6-A.A. 2009-2010

Esercitatore: Maristella Petralla

Moltiplicatori di Lagrange

(1) Sia

$$\begin{cases} f_1(x, y, z) = x + y + z^2 & \text{se } x > 0 \\ f_2(x, y, z) = x^2 + y^2 + z^2 & \text{se } x \le 0. \end{cases}$$

Sia $D = D : + \cup D_{-}$ dove

$$D_{+} = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, \pm x \ge 0 \}.$$

Allora:

- (a) calcolare il massimo/minimo assoluto di $f_1(x, y, z)$ in D_+ .
- (b) calcolare il massimo/minimo assoluto di $f_2(x, y, z)$ in D_- .
- (c) dai due punti precedenti, dedurre il valore dell'estremo superiore/inferiore di f in D. Stabilire inoltre se tale valore rappresenta il massimo/minimo assoluto di f in D indicando i punti in cui venisse eventualmente assunto.
- (2) Sia $f(x,y) = x^2 xy^2$ e $E := \{(x,y) \in \mathbb{R}^2 : 0 \le y \le x\}$. f ammette massimo, minimo o estremo inferiore o superiore in E e in \mathbb{R}^2 ?
- (3) Sia $A=\{\,(x,y)\in\mathbb{R}^2\,:\,x\,y+\frac{1}{2}\,\sin(x\,y)>\pi\,\}$ e $f(x,y)=\frac{1}{x^2+y^2}$. Allora
 - (a) discutere se l'insieme A é compatto oppure no;
 - (b) calcolare, qualora esista, $\lim_{\|(x,y)\|\to+\infty} f(x,y)$;
 - (c) determinare estremo inferiore/superiore di f(x,y) in A ed eventuali punti di minimo/massimo assoluto. (Suggerimento:la funzione $g(t) = t + \frac{1}{2}\sin t$ é monotona strettamente crescente in \mathbb{R} e $g(\pi) = \pi$.)
- (4) Dati a,b,c>0 trovare un parallelepipedo di volume massimo e spigoli paralleli agli assi coordinati inscritto nel paraboloide

$$\Big\{\,(x,y,z)\in\mathbb{R}^3\,:\,\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\,\Big\}.$$

Soluzioni

(1) (a) Consideriamo la funzione $f_1(x, y, z) = x + y + z^2$ su D_+ . Poiché $\nabla f_1(x, y, z) = (1, 1, 2z) \neq (0, 0, 0)$, abbiamo che la funzione f_1 non ammette punti critici liberi all'interno di D_+ . La frontiera D_+ si spezza in due componenti:

$$\{x^2 + y^2 + z^2 = 1\} \cup \{x > 0\}, \{(0, y, z) : y^2 + z^2 \le 1\}.$$

Per quanto riguarda il primo insieme, studiamo i punti critici vincolati di f_1 sulla sfera unitaria prendendo poi in considerazione solo quelli con prima coordianata positiva. Dobbiamo quindi studiare:

$$\begin{cases} 1 = \lambda x, \\ 1 = \lambda y, \\ z(2 - \lambda) = 0, \\ x^2 + y^2 + z^2 = 1. \end{cases}$$

Dalla terza equazione otteniamo che: z=0 e quindi $x=y=\pm\frac{\sqrt{2}}{2}$, oppure $\lambda=2,\ x=y=\frac{1}{2}$ e quindi $z=\frac{\pm\sqrt{2}}{2}$. Prendendo in considerazione i punti con prima coordinata positiva, otteniamo i seguenti punti critici vincolati: $P=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0)$ e $Q_{\pm}(\frac{1}{2},\frac{1}{2},\pm\frac{\sqrt{2}}{2})$, su cui la funzione f_1 assume i valori: $f_1(P)=\sqrt{2}< f_1(Q_{\pm})=\frac{3}{2}$. Per quanto riguarda il secondo insieme che compone la frontiera di D_+ , consideriamo la restrizione di f_1 su $\{x=0\}$: $g(x,y)=y+z^2$. Studiamo poi la funzione g(x,y) nel disco 2-dimensionale $\{y^2+z^2=1\}$. Il sistema

$$\begin{cases} 1 = \lambda y, \\ z(2 - \lambda) = 0, \\ y^2 + z^2 = 1, \end{cases}$$

produce quattro soluzioni $M_{\pm}=(0,\pm,0), T_{\pm}=(0,\frac{1}{2},\pm\frac{\sqrt{3}}{2}).$ Poiché $f_1(M_{\pm})=\pm 1, \ f_1(T_{\pm})=\frac{5}{4},$ otteniamo che: $\max_{D_+}f_1=f_1(Q_{\pm})=\frac{3}{2}, \ \min_{D_+}f_1=f_1(M_-)=-1.$

- (b) La funzione $f_2(x,y,z)=x^2+y^2+z^2$ rappresenta il quadrato della distanza dall'origine. Quindi $0 \le f_2 \le 1$ sul disco 3—dimensionale $D_+ \cup D_+$ e $f_2 \le 1$ sulla sfera $\{x^2+y^2+z^2=1\}$. Quindi: $\max_{D_-} f_2=1$, $\min_{D_-} f_2=0$.
- (c) Poiché $f_1 \geq -1$ in D_- , abbiamo che $f \geq -1$ su $D_+ \cup D_-$. Lungo la successione $M_t = (t, -1, 0), t \to 0^+$, abbiamo che $f(M_t) = f_1(M_t) \to f_1(M_-) = -1$. Quindi $\inf_{D_+ \cup D_-} f = -1$ e l'estremo inferiore non viene mai raggiunto. Invece il massimo assoluto risulta essere in $Q_{\pm} : \max_{D_+ \cup D_-} f = f(Q_{\pm}) = \frac{3}{2}$.
- (2) Basta osservare che (n,0), $(n,n) \in E$, $f(n,0) = n^2 \to +\infty$ e $f(n,n) = n^2 n^3 \to -\infty$ per $n \to +\infty$, otteniamo che

$$\inf_{\mathbb{R}^2} f - \infty, \ \sup_{\mathbb{R}^2} f = +\infty = \sup_{E} f.$$

- (3) (a) L'insieme A non é chiuso e neanche limitato, infatti, la successione $(2 \pi n, \frac{1}{n}) \in A$ é limitata.
 - (b) Chiaramente $\lim_{|(x,y)|\to+\infty} f(x,y)=0$

(c) Poiché f > 0 in \mathbb{R}^2 , dal punto precedente otteniamo $\inf_{\mathbb{R}^2} f(x,y) = 0$ che non viene mai raggiunto. Sempre dal punto precedente segue che la funzione f(x,y) raggiunge massimo in \bar{A} . Determiniamo ora il punto di massimo assoluto di f in \bar{A} . Studiamo i punti critici liberi:

$$\nabla f(x,y) = \frac{-2}{(x^2 + y^2)^2}(x,y) = (0,0)$$
 se e solo se $x = y = 0$.

Non essendo l'origine un punto di A, tale punto deve essere scartato. Studiamo i punti critici vincolati:

$$\nabla f(x,y) = \frac{-2}{(x^2 + y^2)^2}(x,y) = \lambda (1 + \frac{1}{2}\cos(xy))(y,x).$$

Quindi

$$\begin{cases} \frac{-2}{(x^2+y^2)^2} x = \lambda \left(1 + \frac{1}{2} \cos(xy)\right) y \\ \frac{-2}{(x^2+y^2)^2} y = \lambda \left(1 + \frac{1}{2} \cos(xy)\right) x \end{cases}$$

riassorbiamo i fattori $\frac{-2}{(x^2+y^2)^2}$, $(1+\frac{1}{2}\cos(xy))$ nel moltiplicatore λ , ponendo $\beta = (1+\frac{1}{2}\cos(xy))\frac{-2}{(x^2+y^2)^2}$. Dobbiamo quindi studiare il sistema:

$$\begin{cases} x = \beta y \\ y = \beta x, \end{cases}$$

 $(x,y)\in\partial A$. Poiché $(0,0)\notin\partial A$, β , $x,y\neq 0$. Allora $x^2=\beta\,x,\,y=y^2$ e $x=\pm y$. Essendo $(x,-x)\notin\partial A$ osserviamo che i punti critici vincolati P_0 sono della forma (x_0,x_0) , dove x_0 deve soddisfare $g(x_0^2)=x_0^2+\frac{1}{2}\sin(x_0^2)=\pi$ in modo tle che $P_0\in\partial A$. Dal suggerimento, l'unica soluzione é $x_0^2=\pi$. Quindi $P_0=(\sqrt{\pi},\sqrt{\pi})$ é l'unico punto critico vincolato di f(x,y) su ∂A . Abbiamo allora $\max_{\bar{A}}f=f(\sqrt{\pi},\sqrt{\pi})=\frac{1}{\pi}$. Siccome $f<\frac{1}{2\pi}$ in A e $f(\sqrt{\pi}+\frac{1}{n},\sqrt{\pi})\to\frac{1}{2\pi}$ per $n\to+\infty$, dove $P_n=(\sqrt{\pi}+\frac{1}{n},\sqrt{\pi})\in A$, otteniamo che $\sup_A f=\frac{1}{2\pi}$ e non é mai raggiunto in A.