AM5-2008: Tracce delle lezioni- 1

MISURE.

Dato un insieme X, una famiglia Σ di sottoinsiemi di X si chiama σ -algebra se

(i)
$$\emptyset \in \Sigma$$
, (ii) $E \in \Sigma \Rightarrow E^c \in \Sigma$, (iii) $E_j \in \Sigma \Rightarrow \bigcup_{j=1}^{+\infty} E_j \in \Sigma$

Una funzione $\mu: \Sigma \to [0, +\infty]$, si chiama **misura** se: $\mu(\emptyset) = 0$ e

(numerabile additivitá) $E_i \in \Sigma, \quad E_i \cap E_j = \emptyset \quad \forall i \neq j = \emptyset$

$$\mu(\bigcup_{j=1}^{+\infty} E_j) = \sum_{j=1}^{+\infty} \mu(E_j)$$

 $!! \to !!$ $A_i \in \Sigma \Rightarrow \cap_i A_i = (\cup_i A_i^c)^c \in \Sigma, \quad A, B \in \Sigma \Rightarrow A \setminus B = A \cap B^c \in \Sigma$

Proposizione 1. Sia $\mu: \Sigma \to [0, +\infty]$ misura. Allora

- (i) $A, B \in \Sigma, A \subset B \Rightarrow \mu(A) \leq \mu(B)$
- (ii) $A, B \in \Sigma, A \subset B, \ \mu(A) < +\infty \Rightarrow \mu(B \setminus A) = \mu(B) \mu(A)$
- (iii) $E_j \in \Sigma$, $E_j \subset E_{j+1} \ \forall j \ \Rightarrow \ \mu(E_j) \to \mu(\bigcup_{j=1}^{+\infty} E_j)$ (in modo crescente)
- (iv) $E_j \in \Sigma$, $E_{j+1} \subset E_j \quad \forall j$, $\mu(E_1) < +\infty \implies \mu(E_j) \to \mu(\bigcap_{j=1}^{+\infty} E_j)$

Prova. (i)-(ii): $B = (B \setminus A) \cup A \Rightarrow \mu(B) = \mu(B \setminus A) + \mu(A)$

(iii) Ovvio se $\mu(E_j) = +\infty$ per qualche j. Sia dunque $\mu(E_j) < +\infty$ $\forall j$. Scriviamo $E_0 := \emptyset$. É $\bigcup_{j=0}^{+\infty} E_j = \bigcup_{j=1}^{+\infty} \left[E_{j+1} \setminus E_j \right]$ unione disgiunta e quindi

$$\mu(\bigcup_{j=1}^{+\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_{j+1} \setminus E_j) = \lim_{n} \sum_{j=0}^{n} \mu(E_{j+1} \setminus E_j) = \lim_{n} \mu(E_{n+1})$$

(iv)
$$E_1 \setminus \cap_j E_j = \cup_j (E_1 \setminus E_j)$$
 unione crescente e $\mu(E_1) < +\infty \Rightarrow$

$$\mu(E_1) - \mu(\cap_i E_i) = \mu(E_1 \setminus \cap_j E_j) = \mu(\cup_j [E_1 \setminus E_j]) = \lim_n \mu(E_1 \setminus E_j)$$

$$= \mu(E_1) - \lim_n \mu(E_j)$$

Definizione 1: Misure "esterne" (generazione di misure).

Dato un insieme X, sia $\mathcal{P}(X) := \{A : A \subset X\}$ l'insieme delle parti di X. Una funzione $\mu : \mathcal{P}(X) \to [0, +\infty]$, si chiama misura (esterna), se $\mu(\emptyset) = 0$ e

$$A \subset \cup_{j=1}^{+\infty} A_j \Rightarrow \mu(A) \leq \sum_{j=1}^{+\infty} \mu(A_j)$$
 (numerabile subadditivitá)

 $! \to ! \quad \mu \text{ \'e monotona:} \quad A \subset B \quad \Rightarrow \quad \mu(A) \ \leq \mu(B).$

Esempi: le misure (esterne) di Lebesgue e di Hausdorff in \mathbb{R}^N

Misura di Lebesgue. Qui $R = I_1 \times ... \times I_N$, I_j intervalli in \mathbf{R} , denota un rettangolo in \mathbf{R}^N , e $\operatorname{Vol}(R) = l(I_1) \times ... \times l(I_N)$ (0 $\infty := 0$) é il suo volume (l(I) := lunghezza di I). La misura di Lebesgue L^N é definita dalla posizione:

$$L^{N}(A) := \inf\{\sum_{j=1}^{+\infty} \operatorname{Vol}(R_{j}) : A \subset \cup_{j} R_{j}\}, \quad A \subset \mathbf{R}^{N}$$

Nota che $L^N(R) = \operatorname{Vol}(R)$. L^N é misura (esterna). Infatti, dato $A \subset \cup_j A_j$, e supposto $\mu(A_j) < \infty \quad \forall j$, sia $A_j \subset \cup_i R_{ij}$ con $\sum_i \operatorname{Vol}(R_{ij}) \leq L^N(A_j) + \frac{\epsilon}{2^j}$. Allora $A \subset \cup_{ij} R_{ij}$ e quindi $L^N(A) \leq \sum_{ij} \operatorname{Vol}(R_{ij}) \leq 2\epsilon + \sum_j L^N(A_j)$.

Invarianza per traslazione, N-omogeneitá.

Ricordiamo che se $A \subset \mathbf{R}^N, h \in \mathbf{R}^N, t > 0$, $A + h := \{x + h | x \in A\}$, $tA := \{tx | x \in A\}$ sono rispettivamente il traslato di A lungo h, il dilatato di A (di coefficente t). Da $\operatorname{vol}(R + h) = \operatorname{vol}(R)$, $\operatorname{vol}(tR) = t^N$ $\operatorname{vol}(R)$, segue che

$$L^N(A+h) = L^N(A), \quad L^N(tA) = t^N L^N(A) \quad \forall A \subset \mathbf{R}^N, \quad h \in \mathbf{R}^N, \quad t \ge 0$$

Misura di Hausdorff. Dati $s \ge 0$, $\delta > 0$, $A \subset \mathbb{R}^n$, siano

$$H^s_{\delta}(A) := \inf \left\{ \sum_{j=1}^{+\infty} (\operatorname{diam} C_j)^s : A \subset \cup_{j=1}^{+\infty} C_j, C_j = \overline{C}_j, \operatorname{diam} C_j \leq \delta \right\}$$

$$H^s(A) := \sup_{\delta > 0} H^s_{\delta}(A)$$

 H^s é misura (esterna) (detta di Hausdorff s-dimensionale).

Come sopra, $H^s(A+h) = h^s(A)$, $H^s(tA) = t^sH^s(A)$.

Definizione 2: Insiemi misurabili. Sia μ misura (esterna) su X. Diremo che

$$E \subset X \ \text{è} \ \mu\text{-misurabile se} \qquad \mu(A) = \mu(A \cap E) + \mu(A \cap E^c), \quad \forall A \subset X$$

o, equivalentemente,
$$A \subset E, B \subset E^c \Rightarrow \mu(A \cup B) = \mu(A) + \mu(B)$$

 Σ_{μ} denoterá la classe dei μ -misurabili.

$$! \to !(i) \quad \mu(E) = 0 \Rightarrow E \in \Sigma_{\mu}.$$

! →!(ii) $E \subset \mathbf{R}^n$ é (Lebesgue) misurabile ⇒ E+h, tE sono (Lebesgue) misurabili .

Proposizione 2 : $\mu_{|\Sigma_{\mu}}$ é una misura

(i)
$$E_i \in \Sigma_{\mu}$$
, $E_i \cap E_j = \emptyset \quad \forall i \neq j \Rightarrow \mu(\bigcup_{i=1}^{+\infty} E_i) = \sum_{i=1}^{+\infty} \mu(E_i)$

(ii) Σ_{μ} è una σ -algebra

Prova di (i): $E \in \Sigma_{\mu}$, $A \cap E = \emptyset \Rightarrow \mu(A \cup E) = \mu(A) + \mu(E)$. Dall'ipotesi segue quindi $\mu(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \mu(E_i)$, $\forall n$ e quindi

$$\sum_{i=1}^{+\infty} \mu(E_i) \geq \mu(\cup_{i=1}^{+\infty} E_i) \geq \mu(\cup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \mu(E_i) \quad \forall n$$

Prova di (ii) : Ovviamente $\emptyset \in \Sigma_{\mu}$ e $E \in \Sigma_{\mu}$ se e solo se $E^c \in \Sigma_{\mu}$. Poi

$$E_1, E_2 \in \Sigma_{\mu} \Rightarrow \mu(A) = \mu(A \cap E_1) + \mu(A \cap E_1^c \cap E_2) + \mu(A \cap E_1^c \cap E_2^c) =$$

$$= \mu(A \cap (E_1 \cup E_2)) + \mu(A \cap (E_1 \cup E_2)^c) \Rightarrow E_1 \cup E_2 \in \Sigma_{\mu}$$

In particolare, $E, F \in \Sigma_{\mu} \Rightarrow E \setminus F = (E^c \cup F)^c \in \Sigma_{\mu}$ e quindi $F_1 := E_1$ e $F_{n+1} := E_{n+1} \setminus \bigcup_{j=1}^n E_j$ sono misurabili, chiaramente tra loro disgiunti e, infine $\bigcup_{j=1}^n F_j = \bigcup_{j=1}^n E_j$ Sostituendo eventualmente gli E_n con gli F_n , possiamo supporre gli E_j tra loro disgiunti.

Ora, dalla misurabilitá di $\bigcup_{j=1}^n E_j$ segue che $\mu(A) \ge \mu(A \cap (\bigcup_{i=1}^n E_i)) + \mu(A \cap (\bigcup_{i=1}^{+\infty} E_i)^c)$. Ma, essendo gli E_j misurabili e disgiunti, é $\mu(A \cap (E_1 \cup E_2)) = \mu(A \cap E_1) + \mu(A \cap E_2)$ e quindi, iterando, $\mu(A \cap (\bigcup_{i=1}^n E_j)) = \sum_{i=1}^n \mu(A \cap E_i)$. Dunque, passando al limite

$$\mu(A) \ge \sum_{i=1}^{+\infty} \mu(A \cap E_i) + \mu(A \cap (\cup_{i=1}^{+\infty} E_i)^c) \ge \mu(A \cap (\cup_{i=1}^{+\infty} E_i)) + \mu(A \cap (\cup_{i=1}^{+\infty} E_i)^c)$$

O ESEMPIO di un insieme in R che non é Lebesgue misurabile.

Sia
$$A_x := (x + \mathbf{Q}) \cap [0, 1].$$
 É
$$x - y \notin \mathbf{Q} \Rightarrow A_x \cap A_y = \emptyset, \qquad x - y \in \mathbf{Q} \Rightarrow A_x = A_y$$

Poi, dall'assioma della scelta:

 $\exists Z \subset \mathbf{R}$ tale che $\forall x : Z \cap A_x$ é esattamente un punto.

Proprietá di Z:

$$\bigcup_{q \in \mathbf{Q}} (Z+q) = \mathbf{R}, \quad q_1 \neq q_2 \quad \Rightarrow \quad (Z+q_1) \cap (Z+q_2) = \emptyset$$

Sia poi $\alpha: \mathbf{N} \to \mathbf{Q}$ biiezione, $q_j := \alpha(j)$. Da

$$L^{1}(\mathbf{R}) \le \sum_{j} L^{1}(Z + q_{j}) = \sum_{j} L^{1}(Z), \quad \text{segue} \quad L^{1}(Z) > 0$$

Sia infine $q_{j_k} \in [0,1] \ \forall k$ e quindi $2 = L^1([0,2]) \ge L^1(\bigcup_{i=1}^n (Z + q_{i_k})).$

Se Z fosse misurabile, lo sarebbero anche gli $Z + q_{j_k}$, e quindi risulterebbe

$$L^{1}(\bigcup_{1}^{n}(Z+q_{i_{k}})) = \sum_{1}^{n}L^{1}(Z+q_{j_{k}}) = nL(Z)$$
 e quindi $n \leq \frac{2}{L^{1}(Z)}$ $\forall n$

contraddizione.

MISURE BORELIANE, di RADON

Sia (X, d) spazio metrico, e sia $\mathcal{B} \subset \mathcal{P}(X)$ la piú piccola sigma algebra che contiene i chiusi di X. \mathcal{B} , intersezione di tutte le σ -algebre che contengono i chiusi di X, si chiama la sigma algebra dei boreliani di X.

Definizione 3.

Una misura (esterna) μ su X si dice **misura boreliana** se $\mathcal{B} \subset \Sigma_{\mu}$.

Se di piú μ é finita sui compatti, μ si dice di Radon.

Definizione 4. Una misura (esterna) μ su X si dice **misura metrica** se

$$0 < d(A, B) \Rightarrow \mu(A \cup B) = \mu(A) + \mu(B)$$

Proposizione 3: μ metrica $\Rightarrow \mu$ boreliana

Premettiamo il

Lemma. Siano μ misura metrica su (X,d), $E_j \subset E_{j+1} \ \forall j$. Allora

$$d(E_{j+2} \ \backslash E_{j+1}, \ E_j \ \backslash E_{j-1}) \ > \ 0 \quad \forall j \geq 2 \ \Rightarrow \ \mu(E_j) \rightarrow \ \mu(\cup_j E_j)$$

Prova del Lemma. Possiamo supporre $\sup_{j} \mu(E_j) < +\infty$.

Siccome, dall'ipotesi ed essendo μ misura metrica,

$$\mu(E_2 \setminus E_1) + \ldots + \mu(E_{2n} \setminus E_{2n-1}) = \mu(\bigcup_{j=1}^n [E_{2j} \setminus E_{2j-1}]) \le \mu(E_{2n}) \le \sup_j \mu(E_j)$$

$$\mu(E_3 \setminus E_2) + \ldots + \mu([E_{2n+1} \setminus E_{2n}]) = \mu(\bigcup_{j=1}^n [E_{2j+1} \setminus E_{2j}]) \le \mu(E_{2n+1}) \le \sup_i \mu(E_j)$$

otteniamo $\sum_j \mu([E_{j+1}\setminus E_j])<+\infty \qquad \text{e quindi} \ \sum_{j\geq n} \mu([E_{j+1}\setminus E_j]\to_n 0 \ \text{e quindi}$ quindi

$$\mu(\cup_j E_j) \leq \mu(E_n) + \sum_{j \geq n} \mu([E_{j+1} \setminus E_j]) \ \forall n \Rightarrow \mu(\cup_j E_j) \leq \lim_n \mu(E_n)$$

 \rightarrow Gli E_j non si suppongono misurabili!

Prova della Proposizione 3. Sia $C = \overline{C}$ un insieme chiuso. Siano $A \subset C$, $B \subset C^c$. Sia $B_n := \{x \in B : d(x,C) \ge \frac{1}{n}\}$.

Si ha che $B = \bigcup_n B_n$ perché $B \subset C^c$, e C^c é aperto. Inoltre

$$d(B_{j+2} \setminus B_{j+1}, B_j \setminus B_{j-1}) \ge \frac{1}{j} - \frac{1}{j+1} > 0 \quad \forall j \ge 2$$

Dal Lemma segue quindi che $\mu(B_n) \to \mu(B)$ e quindi

$$\mu(A \cup B) \geq \mu(A \cup B_n) = \mu(A) + \mu(B_n) \rightarrow \mu(A) + \mu(B)$$

Proposizione 4: L^N é metrica e quindi boreliana.

Infatti, sia $0 < \delta := d(A, B)$. Dato $\epsilon > 0$, siano R_j tali che

$$A \cup B \subset \cup_j R_j$$
, diam $R_j \le \frac{\delta}{2}$, $\sum_j \text{Vol}R_j \le \mu(A \cup B) + \epsilon$

Allora $\mu(A) + \mu(B) \le \sum_{R_j \cap A \ne \emptyset} \text{Vol} R_j + \sum_{R_j \cap B \ne \emptyset} \text{Vol} R_j \le \mu(A \cup B) + \epsilon.$

Proposizione 5. L^N é borel regolare:

 $\forall \ A \subset \mathbf{R}^N \quad \exists \ B \in \mathcal{B}: \quad A \subset B \text{ e } L^N(A) = L^N(B)$ Infatti $L^N(A) = L^N(\cap_j \cup_i R_{ij})$ con $A \subset \cup_i R_{ij}, \ \sum_i \operatorname{Vol} R_{ij} \leq L^N(A) + \frac{1}{i}$

Proposizione 6: $A_j \subset A_{j+1} \Rightarrow L^N(A_j) \to L^N(\cup_j A_j)$

 $\rightarrow \;$ gli A_j non sono supposti misurabili!

Verifica: siano $B_j \in \mathcal{B}$, $A_j \subset B_j$, tali che $L^N(A_j) = L^N(B_j)$. É $A_n \subset \cap_{j \geq n} B_j$ e $\cap_{j \geq n} B_j$ é famiglia crescente (di misurabili). Dunque $L^N(\cup_n A_n) \leq L^N(\cup_n \cap_{j \geq n} B_j) = \lim_{j \geq n} L^N(\cap_{j \geq n} B_j) \leq \lim_{j \geq n} L^N(A_n)$

Proposizione 7: Approssimazione mediante aperti, compatti

- i) $\forall A \subset \mathbf{R}^N : L^N(A) = \inf\{L^N(O) : A \subset O, O \text{ aperto }\}$
- ii) $\forall E$ misurabile : $L^N(E) = \sup\{L^N(K): K \subset E, K \text{ compatto }\}$

La i) segue dal fatto che vol(R) = vol(int R).

(ii) Sia dapprima $E \subset B_r$ e sia O_i aperto tale che $\overline{B}_r \setminus E \subset O_i$, con

$$L^N(O_j) \leq L^N(\overline{B}_r \setminus E) + \frac{1}{j} = L^N(\overline{B}_r) - L^N(E) + \frac{1}{j} \qquad \text{e quindi} \qquad L^N(E) \leq L^N(D_j) \leq L^N(D_j) + \frac{1}{j} = L^N(D_$$

$$L^{N}(\overline{B}_{r}) - L^{N}(O_{j}) + \frac{1}{j} \leq L^{N}(\overline{B}_{r}) - L^{N}(O_{j} \cap \overline{B}_{r}) + \frac{1}{j} = L^{N}(\overline{B}_{r} \setminus O_{j}) + \frac{1}{j}$$

Dunque, $K_j := \overline{B}_r \setminus O_j$ é un compatto contenuto in $E \in L^N(E) \leq L^N(K_j) + \frac{1}{i}$.

Nel caso generale, se B_n denota la palla di raggio n, $L^N(E \cap B_n) \to_n L^N(E)$. Quindi, se $K_n \subset E \cap B_n$ é compatto tale che $L^N(E \cap B_n) \leq L^N(K_n) + \frac{1}{n}$ si ha $L^N(E) \leq \lim_n L^N(K_n) \leq L^N(E)$.

- $\bigcirc \to !!$ Da ii) segue che , se $L^N(E) < +\infty$ ed E é misurabile allora
- (*) $\forall \epsilon, \exists K_{\epsilon} \subset E \subset O_{\epsilon}, K_{\epsilon} \text{ compatto, } O_{\epsilon} \text{ aperto} : L^{N}(O_{\epsilon} \setminus K_{\epsilon}) \leq \epsilon$

Viceversa, se vale (*), E é misurabile: $E = (\cap_n O_{\epsilon_n}) \setminus (\cap_n O_{\epsilon_n} \setminus E)$ é differenza di misurabili perché $(\cap_n O_{\epsilon_n}) \setminus E \subset [\cap_n O_{\epsilon_n}] \setminus [\cup_n K_{\epsilon_n}] \Rightarrow L^N(\cap_n O_{\epsilon_n} \setminus E) = 0$ (dunque, A limitato e misurabile secondo Peano-Jordan \Rightarrow misurabile secondo Lebesgue).

Esercizi e complementi 1

Misura di Hausdorff. Dati $s \ge 0, \ \delta > 0, A \subset \mathbf{R}^n$ sia

$$H^s_{\delta}(A) = \inf\{\sum_{j=1}^{+\infty} (\operatorname{diam} C_j)^s : A \subset \bigcup_{j=1}^{+\infty} C_j, \ C_j = \overline{C}_j, \ \operatorname{diam} C_j \leq \delta\}$$
$$H^s(A) = \sup_{\delta > 0} H^s_{\delta}(A)$$

- (i) Provare che H^s (misura di Hausdorff s-dimensionale) é misura boreliana.
- (ii) $H^s(rA) = r^s H^s(A), \forall A \subset \mathbf{R}^n, \forall r > 0$

(iii)
$$H^s(A) < +\infty, t > s \Rightarrow H^t(A) = 0$$
 e $H^s(A) > 0, t < s \Rightarrow H^t(A) = +\infty$

Esercizio 1 . Sia X un insieme .

- (i) Per ogni $A \subset X$, sia $\mu(A) =$ numero di elementi di A, se A é un insieme finito, $\mu(A) = +\infty$ se A non é finito (μ é "misura che conta"). Provare che μ é una misura sull'insieme delle parti di X.
- (i) Dato $X_0 \subset X$, sia $\delta_{X_0}(E) = 1$ se $E \cap X_0 \neq \emptyset$, $\delta_{X_0}(E) = 0$ se $E \cap X_0 = \emptyset$. Provare che δ_{X_0} è una misura su $X \in \Sigma_{\mu} = \{E : X_0 \subset E \text{ op. } E \subset X_0^c\}$.

Esercizio 2. Dato X, sia Σ una σ - algebra di sottoinsiemi di X, $\mu : \Sigma \to [0, +\infty]$ misura, e sia $\hat{\mu}(E) = \inf\{\sum \mu(A_j) : E \subset \cup A_j, A_j \in \Sigma\}$. Provare che

- (i) $\hat{\mu}$ è misura (esterna) su X, (ii) $\Sigma \subset \Sigma_{\hat{\mu}}$,
- (iii) $\hat{\mu} \in \Sigma$ -regolare: $\forall A \subset X, \exists E \in \Sigma : A \subset E, \hat{\mu}(A) = \mu(E)$

Suggerimento: $E \in \Sigma, A \subset \bigcup_j A_j, A_j \in \Sigma \Rightarrow \sum_j \mu(A_j) \ge \hat{\mu}(A \cap E) + \hat{\mu}(A \setminus E)...$

Esercizio 3. Sia $A \subset \mathbf{R}$, $L^1(A) > 0$. Provare che esiste $E \subset A$ che non é L^1 -misurabile.

Suggerimento. Cominciare col provare che $Z_0 \subset Z$, $L^1(Z_0) > 0 \Rightarrow Z_0$ non é misurabile (Z é il noto esempio di insieme non misurabile...). Provare quindi che $0 < L^1(A \cap (Z + q_i))$ per qualche j

Esercizio 4. Mostrare che non é sempre vero che

$$E_j \subset \mathbf{R}, \ E_{j+1} \subset E_j, L^1(E_1) < +\infty \Rightarrow L^1(E_j) \to L^1(\cap_j E_j)$$

Suggerimento. Da $\cap_n \cup_{j \geq n} (Z + q_j) = \emptyset$... ove Z é come sopra..