ESERCITAZIONE 1: UNIFORME CONTINUITÀ

Tiziana Raparelli

28/02/2008

1 ESERCIZI:

Teoremi e Criteri impiegati:

Sia $f:I\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ una funzione lipschitziana in I. Allora f è uniformemente continua in I.

Teorema 1.1 (Teorema della farfalla). Se $f:[0,+\infty) \longrightarrow \mathbb{R}$ è uniformemente continua, allora $\exists A, B \in \mathbb{R}: |f(x)| \leq Ax + B, \forall x \in dom(f)$.

Teorema 1.2 (Teorema dell'asintoto). Sia $f \in C^0([a, +\infty))$ tale che $\lim_{x \to +\infty} f(x) = l$, allora f è uniformemente continua.

Osservazione 1.1. Il viceversa non è vero, esistono funzioni uniformemente continue che non hanno asintoto orizzontale.

Teorema 1.3 (Heine-Cantor). Se f è continua sull'intervallo [a,b], allora f è uniformemente continua.

ESERCIZIO 1:

Provare che se f è uniformemente continua in (a,b] e in [b,c), allora lo è anche in (a,c).

ESERCIZIO 2:

Stabilire se le seguenti funzioni sono uniformemente continue nei domini indicati:

$$\begin{array}{lcl} (a)f(x) & = & \sqrt{x} \text{ in } [0, +\infty) \\ (b)f(x) & = & \frac{\sin(x^2)}{1+x^2} \text{ in } \mathbb{R} \\ (c)f(x) & = & \arctan\frac{1}{x} \text{ in } (-1,0) \cup (0,1) \cup (1, +\infty) \\ (d)f(x) & = & x^{\frac{1}{3}} \text{ in } \mathbb{R} \\ (e)f(x) & = & (x^2)^{2x} \text{ in } (0,e) \cup (e, +\infty). \end{array}$$

ESERCIZIO 3:

Sia $f(x) = \sin(x^2)x$. Dimostrare che f soddisfa il teorema della farfalla, ma non è uniformemente continua.

ESERCIZIO 4:

Mostrare con dei controesempi che il teorema di Heine Cantor non è vero in un insieme:

- (i) non chiuso
- (ii) illimitato.

ESERCIZIO 5:

Provare che se f, g sono uniformemente continue, allora $\alpha f + \beta g$ e $(f \circ g)$ lo sono anche, mentre in generale non è così per il loro prodotto fg.

2 SOLUZIONI:

ESERCIZIO 1:

Applicando la definizione di uniforme continuità:

 $\forall \epsilon > 0, \exists \delta_1 \text{ tale che } \forall x, y \in (a, c], |x - y| < \delta_1,$

$$\implies |f(x) - f(y)| < \epsilon$$
, e $\forall \epsilon > 0$, $\exists \delta_2$ tale che $\forall x, y \in [c, b), |x - y| < \delta_2$,

$$\implies |f(x) - f(y)| < \epsilon.$$

Posto $\delta = \min\{\delta_1, \delta_2\}$, si dimostra facilmente che $\forall x, y \in (a, b)$ t.c. $|x - y| < \delta$, segue $|f(x) - f(y)| < 2\epsilon$.

ESERCIZIO 2:

- (a) Si osserva che l'uniforme continuità di \sqrt{x} in [0,1] è garantita dal teorema di Heine Cantor, mentre si dimostra che in $[1,+\infty)$ è lipschitziana, dunque si applica il risultato dimostrato nell'esercizio 1.
- (b) Si applica il teorema dell'asintoto (per $x \to \pm \infty$).
- (c) L'uniforme continuità di $\arctan(\frac{1x}{y})$ in (-1,0) si dimostra calcolando i limiti per $x \to -1^+$ e per $x \to 0^-$, (che esistono e sono finiti) e dunque applicando il teorema di Weierstrass e poi quello di Heine Cantor.

Analogamente per $x \in (0,1)$.

In $(1, +\infty)$ si applica il teorema dell'asintoto.

- (d)Scriviamo \mathbb{R} come $(-\infty, -1] \cup [-1, 1] \cup [1, +\infty)$, allora $x^{\frac{1}{3}}$ è uniformemente continua nei due intervalli illimitati perché è lipschitziana, mentre in [-1, 1] lo è per Heine Cantor.
- (e) $f(x) = e^{4x \log x}$ è uniformemente continua in (0, e) perché i limiti per $x \to 0^+$ e per $x \to e^-$ sono entrambi finiti, mentre NON è uniformemente continua in $[e, +\infty)$ perché non soddisfa il teorema della farfalla: dimostriamo infatti che

$$f(x) \ge x^2 \ge Ax + B \forall x \in [c, +\infty), \text{ con } c > \frac{A}{2} + \sqrt{\left(\frac{A}{2}\right)^2 + B}$$

ESERCIZIO 3:

Osserviamo che $\forall x \in [0, +\infty)$, vale:

$$|x\sin(x^2)| \le x$$
.

Siano $x_k^m = \sqrt{\frac{3}{2}\pi + 2k\pi}$ e $x_k^M = \sqrt{\frac{1}{2}\pi + 2k\pi}$, allora

$$\lim_{k \to +\infty} |x_k^M - x_k^m| = 0,$$

mentre

$$\lim_{k\to +\infty} |f(x_k^M) - f(x_k^m)| = \lim_{k\to +\infty} |x_k^m + x_k^M| = +\infty,$$

cio
èfnon è uniformemente continua.

ESERCIZIO 4:

(i) $f(x) = \frac{1}{x}$ in (0,1], scegliamo $y = \frac{x}{2}$, provando ad applicare la definizione di uniforme continuità, con $\delta = \frac{1}{2}$, otteniamo la disuguaglianza $\frac{1}{x} > \epsilon$, vera $\forall x<\frac{1}{\epsilon}.$ (ii) $f(x)=x^2$ in $[0,+\infty)$ non soddisfa il teorema della farfalla.

ESERCIZIO 5:

Si applica la definizione nei primi due casi, si usa un controesempio per il prodotto (ad esempio con f = g = x).