Esercitazione 1- Am3 Prof. Ugo Bessi, Dott. Claudia Di Giulio 28 febbraio 2005

Esercizio 1

La soluzione di un'equazione differenziale lineare u'+a(t)u=b(t) é $u(t)=e^{-A(t)}\int b(t)e^{A(t)}dt$ con $A(t)=\int a(t)dt$

1. In questo caso $a(t) = \sin t$ e $b(t) = (1 + \cos t) \sin t$. Allora $A(t) = \int \sin t dt = -\cos t$. La soluzione $u(t) = 2 + \cos t + c$ si ottiene risolvendo l'integrale:

$$u(t) = e^{\cos t} \int (1 + \cos t) \sin t e^{-\cos t} dt$$

2. In questo caso $A(t) = \int a(t)dt = \int \frac{2}{t}dt = 2\ln|t|$. La soluzione $u(t) = e^t - \frac{2e^t}{t} + \frac{2e^t}{t^2} + \frac{t}{3} + c$ si ottiene risolvendo:

$$e^{-A(t)} \int e^A(t)b(t)dt$$

ossia

$$e^{-2\ln|t|} \int e^{2\ln t} (e^t + 1) dt = \frac{1}{t^2} \int t^2 (e^t + 1) dt$$

3. Inizialmente si calcola $A(t)=\int-\frac{1}{1+e^x}dx=-x+\ln(1+e^x)+c$. La soluzione dell'equazione é $u(x)=\frac{1}{1+e^x}(-\frac{e^{-x}}{2}-1+ce^x)$ e si ottiene risolvendo $u(x)=e^{-A(x)}\int e^{A(x)}b(x)dx=e^{x-\ln(1+e^x)}\int e^{-x}e^{-x+\ln(1+e^x)}dx+c=\frac{e^x}{1+e^x}\int e^{-2x}(1+e^x)dx$

Esercizio 2

Per dimostrare che F é una contrazione consideriamo

$$\begin{split} d(F(f),F(g)) &= d(\varphi,\psi) = \\ &= \sup_{x \in [0;1]} |\varphi(x) - \psi(x)| = \sup_{x \in [0;1]} \left| 1 + \int_0^1 e^{-xy} y f(y) dy - 1 - \int_0^1 e^{-xy} y g(y) dy \right| = \\ &= \sup_{x \in [0;1]} \left| \int_0^1 e^{-xy} y f(y) dy - \int_0^1 e^{-xy} y g(y) dy \right| = \\ &= \sup_{x \in [0;1]} \left| \int_0^1 e^{-xy} y (f(y) - g(y)) dy \right| \leq \\ &\leq \sup_{x \in [0;1]} \int_0^1 e^{-xy} y |f(y) - g(y)| \, dy \leq \end{split}$$

$$\leq d(f;g)(\sup_{x\in[0;1]} \int_0^1 e^{-xy} y dy) \leq$$

 $\leq d(f;g) \int_0^1 y dy = \frac{1}{2} d(f;g)$

Esercizio 3

Osserviamo che:

$$|(F_{\lambda}(u))(x) - (F_{\lambda}(v))(x)| = \left| e^{-\lambda x} \int_{0}^{x} e^{\lambda t} u(t) dt - e^{-\lambda x} \int_{0}^{x} e^{\lambda t} v(t) dt \right| =$$

$$= e^{-\lambda x} \left| \int_{0}^{x} e^{\lambda t} u(t) dt - \int_{0}^{x} e^{\lambda t} v(t) dt \right| =$$

$$= e^{-\lambda x} \left| \int_{0}^{x} e^{\lambda t} (u(t) - v(t)) dt \right| \leq$$

$$\leq e^{-\lambda x} \int_{0}^{x} e^{\lambda t} |u(t) - v(t)| dt \leq$$

$$\leq e^{-\lambda x} \sup_{x \in [0;1]} |u(x) - v(x)| \int_{0}^{x} e^{\lambda t} dt =$$

$$= d(u; v) e^{-\lambda x} \int_{0}^{x} e^{\lambda t} dt = g_{\lambda}(x) d(u; v)$$

dove $g_{\lambda}(x) = e^{-\lambda x} \int_{0}^{x} e^{\lambda t} dt$.

Poiché $d(F_{\lambda}(u),F_{\lambda}(v))=\sup_{x\in[0;1]}|(F_{\lambda}(u))(x)-(F_{\lambda}(v))(x)|$

allora $d(F_{\lambda}(u), F_{\lambda}(v)) \leq (\sup_{x \in [0;1]} g_{\lambda}(x)) d(u; v) = k_{\lambda} d(u; v)$

dove con k_{λ} abbiamo indicato $\sup_{x \in [0,1]} g_{\lambda}(x)$.

F é una contrazione per tutti i λ per cui $k_{\lambda} = \sup_{x \in [0;1]} g_{\lambda}(x) < 1$, con $g_{\lambda}(x) = x$ per $\lambda = 0$, $g_{\lambda}(x) = \frac{1 - e^{-\lambda x}}{\lambda}$ per $\lambda \neq 0$.

Osserviamo che per $\lambda=0$ F_{λ} non é una contrazione perché $sup_{x\in[0;1]}x=1$

Per $\lambda \neq 0$ considero $g_{\lambda}(x) = \frac{1-e^{-\lambda x}}{\lambda}$ ed osservo dallo studio della derivata prima $g'_{\lambda}(x) = e^{-\lambda x}$ che é una funzione crescente, quindi $k_{\lambda} = \sup_{x \in [0;1]} g_{\lambda}(x) = g_{\lambda}(1) = \frac{1-e^{-\lambda}}{\lambda}$. Affinché F_{λ} sia una contrazione $\frac{1-e^{-\lambda}}{\lambda}$ deve essere minore di 1. Per studiare dove $\frac{1-e^{-\lambda}}{\lambda} < 1$, consideriamo separatamente i casi $\lambda > 0$ e $\lambda < 0$.

Se $\lambda > 0$, $\frac{1-e^{-\lambda}}{\lambda} < 1$ per quei valori di λ per cui $1-e^{-\lambda} < \lambda$, ma $1-\lambda < e^{-\lambda}$ per ogni $\lambda > 0$. Se $\lambda < 0$, $\frac{1-e^{-\lambda}}{\lambda} < 1$ per quei valori di λ per cui $1-e^{-\lambda} > \lambda$, ossia quando la funzione $h(\lambda) = 1-\lambda - e^{-\lambda}$ é positiva. Osserviamo che la derivata prima $h'(\lambda) = -1 + e^{-\lambda}$ della funzione $h(\lambda)$ é positiva per ogni λ minore di zero, quindi la funzione $h(\lambda)$ é crescente per $\lambda < 0$. Poiché h(0) = 0, $h(\lambda) < 0$ per ogni λ minore di zero; $1-\lambda - e^{-\lambda} < 0$ e quindi per λ minore di zero F_{λ} non é una contrazione. Concludendo, F_{λ} é una contrazione per ogni λ maggiore di zero.