II ESERCITAZIONE DI AM1B

In questa lezione verranno definite le potenze con esponente reale i logaritmi, vedremo alcuni risultati sulle successioni di potenze.

1. Potenze con esponente reale

Cominciamo con il ricordare le potenze intere. Per ogni $n \in \mathbb{N}$ si definisce la funzione

$$\mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto x^n = \overbrace{x \cdot \cdots \cdot x}^n$$

ed inoltre $x^0 = 1$. Ricordiamo alcune proprietà della funzione x^n .

- Se n è pari la funzione x^n è positiva su $\mathbb{R} \setminus \{0\}$, crescente su \mathbb{R}^+ e decrescente su \mathbb{R}^- .
- Se n è dispari allora x^n è crescente su tutto \mathbb{R} , positiva su \mathbb{R}^+ e negativa su \mathbb{R}^- .
- Per ogni $n,m\in\mathbb{N}$ ed $x,y\in\mathbb{R}$ si ha

$$(1) x^n x^m = x^{n+m}$$

$$(2) (x^n)^m = x^{nm}$$

$$(3) (xy)^m = x^n y^m$$

Proviamo ad esempio che, su \mathbb{R}^+ , x^n è crescente e positiva per ogni n. Procediamo per induzione

Per n=1 la tesi è ovvia. Supponiamo sia vero per n. Allora $x^{n+1}=x^nx$. Poichè x>0, perché ci siamo ristretti ad \mathbb{R}^+ , e poiché $x^n>0$ per ipotesi induttiva, allora $x^{n+1}>0$. Inoltre se x< y

$$x^{n+1} = x^n x < x^n y$$
 ip.ind. $\stackrel{e}{<} y > 0$ $y^n y = y^{n+1}$

Osserviamo che gli altri casi si possono provare a partire da questo risultato in modo semplice. Come?

Abbiamo provato che restringendo il dominio otteniamo la funzione

$$x^n: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$

che è monotòna crescente. La monotònia implica l'iniettiva.

Lemma 1.1. Ogni funzione strettamente monotòna $f: I \to \mathbb{R}$, con I intervallo di \mathbb{R} , è iniettiva.

Dimostrazione. Per definizione di stretta monotònia per ogni $x, y \in I$ distinti si deve avere f(x) < f(y) o f(x) > f(y). Sicché non si può mai avere f(x) = f(y).

Inoltre a lezione avete provato che ogni numero reale positivo a ammette un'unica radice n-esima. Questo è equivalente a dire che $x^n : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ è biunivoca. Quindi ammette un'inversa che appunto indichiamo con

$$x^{\frac{1}{n}} = \sqrt[n]{x} : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$

che è monotòna crescente per il lemma seguente.

Lemma 1.2. Sia $f: I \longrightarrow f(I)$ una funzione strettamente crescente e sia $f^{-1}: f(I) \longrightarrow I$ la sua inversa con I, J intervalli di \mathbb{R} . Allora f^{-1} è strettamente crescente. Vale lo steso per la decrescenza.

Osservazione 1.3. Nelle ipotesi del lemma l'inversa esiste sempre perché f è iniettiva per 1.1 ed inoltre è suriettiva banalmente perché abbiamo ristretto il codominio alla sua immagina

Dimostrazione. Proviamo il caso in cui f sia crescente. Per la decrescenza basterà poi osservare che -f e crescente.

Supponiamo esistano x < y con $f^{-1}(x) > f - 1(y)$. Ma allora per la crescenza di f si avrebbe

$$x = f(f^{-1}(x)) > f(f^{-1})(y) = y$$

che contraddirrebbe l'ipotesi.

Si osservi che in realtà se n è dispari l'inversa di x^n è definita su tutto \mathbb{R} ma per i nostri scopi ci limitiamo al caso x > 0.

Definiamo ora le potenze razionali. Innanzitutto se $n \in \mathbb{N}$ poniamo

$$x^{-n} := \left(\frac{1}{x}\right)^n$$

Se $q = \frac{r}{s} \in \mathbb{Q}$ poniamo

$$x^{\frac{p}{q}} := (x^p)^{\frac{1}{q}} = (x^{\frac{1}{q}})^p$$

E' facile verificare che le proprietà (1), (2) e (3) continuano a valere anche per potenze razionali e che x^q è crescente per $q \in \mathbb{Q}$.

Proviamo ad esempio la (1). Si ha

$$x^{\frac{p}{q} + \frac{r}{s}} = x^{\frac{ps + qr}{qs}} = (x^{\frac{1}{qs}})^{ps + qr} = (x^{\frac{1}{qs}})^{ps} (x^{\frac{1}{qs}})^{qr} = x^{\frac{p}{q}} x^{\frac{r}{s}}$$

Abbiamo utilizzato solo proprietà valide per potenze intere e la definizione di potenza razionale.

Abbiamo inoltre costruito, per ogni $A \in \mathbb{R}^+ \setminus \{1\}$, una funzione

$$A^q: \mathbb{O} \longrightarrow \mathbb{R}$$

Elenchiamo alcune proprietà di A^q . Per ogni $A \in \mathbb{R}^+$ si ha

- (i) $A^r > 0$ per ogni r
- (ii) A^r è cresecente se A > 1
- (iii) A^r è decrescente se A < 1

La (i) è immediata perché ciò vale per potenze intere. Proviamo la (ii). Sia s > r. Da 1 valida per potenze razionali si ottiene

$$A^s = A^r A^{r-s}$$

ma siccome A > 1, $A^{r-s} > 1$ perché x^{r-s} è crescente. Quindi segue $A^s > A^r$.

Per la (iii) si osservi che se A < 1 allora 1/A > 1 e quindi $(1/A)^q$ è crescente che equivale a dire che A^q è decrescente.

Prima di definire le potenze con esponente reale dimostriamo il seguente lemma

Lemma 1.4. Sia $\{a_n\}$ una successione in \mathbb{Q} tale che $a_n \stackrel{n\to\infty}{\longrightarrow} 0$. Allora per ogni $A \in \mathbb{R}^+$ si ha

$$\lim_{n \to \infty} A^{a_n} = 1$$

Dimostrazione. Supponiamo A>1. Sappiamo che $\lim_{n\to\infty}A^{\frac{1}{n}}=1$ cosicché per ogni $\varepsilon>0$ esiste un intero n_0 tale che

$$|A^{\frac{1}{n_0}} - 1| < \varepsilon$$

Poiché $\lim_{n\to\infty} a_n = 0$ esiste n_1 tale che per ogni $n>n_1$

$$|a_n| < \frac{1}{n_0}$$

Quindi per ogni $n > n_1$

$$|A^{a_n} - 1| \le A^{|a_n|} - 1 < |A^{\frac{1}{n_0}} - 1| < \varepsilon$$

Se A < 1 allora 1/A > 1 sicché, sapendo che il lemma è vero per 1/A,

$$\lim_{n \to \infty} A^{a_n} = \frac{1}{\lim_{n \to \infty} (1/A^{a_n})} = 1$$

Si è anche utilizzato il fatto che per ogni successione $\{b_n\}$ convergente si ha

$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{\lim_{n \to \infty} b_n}$$

Sia ora $\alpha \in \mathbb{R}$ e sia $\{a_n\}$ una successione crescente in \mathbb{Q} tale che $\lim_{n\to\infty} a_n = \alpha$. Allora $\{A^{a^n}\}$ è una successione crescente ed ovviamente limitata (sia m un intero maggiore di α , allora $A^{a_n} < \alpha$). Quindi per il teorema sulle successione monotòne esiste un limite L.

Proviamo che tale limite non dipende dalla successione scelta. Sia $\{b_n\}$ un'altra successione che tende ad α . Allora si ha

$$A^{b_n} - A^{a_n} = A^{b_n} (A^{b_n - a_n} - 1)$$

Per il lemma $A^{b_n-a_n}-1$ tende ad 1 mentre A^{a_n} tende ad L. Sicché $\lim_{n\to\infty}A^{b_n}=L$.

Definiamo quindi A^{α} come il limite

$$A^{\alpha} = \lim_{n \to \infty} A^{a_n}$$
 , $a_n \in \mathbb{Q}$, $\lim_{n \to \infty} a_n = \alpha$

Utilizzando le proprietà di somma e prodotto di limiti si provi per esrcizio le proprietà (1), (2) e (3). Inoltre si provi che la funzione $A^x : \mathbb{R} \to \mathbb{R}$, è sempre positiva, crescente se A > 1 e decrescenti se A < 1.

Lemma 1.5. Sia $\{a_n\}$ una successione tale che $\lim_{n\to\infty} a_n = \alpha \in \mathbb{R}$. Allora $\lim_{n\to\infty} A^{a_n} = A^{\alpha}$. Se $\alpha = +\infty$ allora

- $\lim A^{a_n} = \infty \text{ se } A > 1$
- $\bullet \lim_{n \to \infty}^{n \to \infty} A^{a_n} = 0 \text{ se } A > 1$

Osservazione 1.6. Si lascia al lettore verificare cosa accade se $\alpha = -\infty$. Si suggerisce di utilizzare i risultati del lemma.

Dimostrazione. Si osservi che nel lemma precedente si può togliere l'ipotesi che la successione sia a valori razionali. Si sfrutta solo la monotònia di A^x .

Supponiamo dapprima $\alpha \in \mathbb{R}$. Sicché si consideri la successione $a_n - \alpha$. Questa tende a zero (si osservi che non è valori razionali). Sicché per il lemma precedente $\lim_{n \to \infty} A^{a_n - \alpha} = 1$ e cioè $\lim_{n \to \infty} A^{a_n} = A^{\alpha}$.

Sia A > 1. Se $\alpha = +\infty$ allora per ogni $N \in \mathbb{N}$ esiste un n_0 tale che, per ogni $n > n_0$, $a_n > N$ per ogni n > 0. Per la crescenza di A^x se A > 1 si ha, per ogni $N \in \mathbb{N}$, $A^{a_n} > A^N$ per $n > n_0$. Quindi

$$\lim_{n\to\infty} A^{a_n} = \infty$$

Se A < 1 allora 1/A > 1 quindi ...

Esempio 1.7. Si ha $\lim_{n\to\infty} 2^{\sqrt[n]{n}+2} = 8$. Infatti

$$\lim_{n \to \infty} \sqrt[n]{n} + 2 = 3$$

e quindi per il lemma precedente $\lim_{n\to\infty} 2^{\sqrt[n]{n}+2} = 8$.

2. Logaritmi

Nel precedente paragrafo abbiamo visto che la funzione A^x è una funzione monotòna da \mathbb{R} in \mathbb{R}^+ . Il fatto che A^x è suriettiva lo proveremo quando faremo le funzioni continue. Prendiamo per vero ciò.

Definizione 2.1. Per ogni $A \in \mathbb{R}^+ \setminus \{1\}$ definiamo $\log_A(x) : \mathbb{R}^+ \to \mathbb{R}$ la funzione inversa di A^x .

Esplicitiamo la definizone di logaritmo. Quindi, per ogni $x \in \mathbb{R}^+$ ed ogni $A \in \mathbb{R}^+ \setminus \{1\}$, $\log_A(x)$ è l'unico numero reale tale che

$$A^{\log_A(x)} = x$$

Inoltre $\log_A(A^x) = A$. Il logaritmo ha le seguenti proprietà:

- $(1) \log_A(xy) = \log_A(x) + \log_A(y)$
- $(2) \log_A(x) = \log_A(B) \log_B(x)$

Proviamo (1). Dalle proprietà dell'esponenziale si ha che

$$A^{\log_A(x) + \log_A(y)} = A^{\log_A(x)} A^{\log_A(y)} = xy$$

che è quello che dovevamo provare.

Per provare la (2) basta osservare che

$$A^{\log_A(B)\log_B(x)} = A^{\log_A(B)\log_B(x)} = B^{\log_B(x)} = x$$

SEMPLICI OSSERVAZIONI

Si osservi in particolare che se si pone $y = x^{-1}$ nella (1) allora

$$\log(1) = \log_A(x) + \log_A(x^{-1})$$

Poiché log(1) = 0 allora

$$\log_A(x^{-1}) = -\log_A(x)$$

Inoltre dalla (1) segue che $\log_B(x^2) = 2\log_B(x)$. Procedendo per induzione si può provare che

$$\log_B(x^k) = k \log_B(x)$$

per ogni $k \in \mathbb{Z}$.

Infine dalla (2) segue in particolare che

$$\log_B(x) = -\log_{\frac{1}{D}}(x)$$

Notazione

Se A=10 si scrive semplemente $\log(x)$. Mentre se A=e (e è il numero di Nepero che introdurremo nella prossima lezione) allora si scrive $\ln(x)$.

3. LIMITI DI SUCCESSIONI CON ESPONENZIALI REALI

Calcoliamo ora alcuni limiti che coinvolgono potenze reali. Prima di far ciò facciamo una piccola parentesi.

Definizione 3.1. Sia $x \in \mathbb{R}$. Allora definiamo parte intera di x e lo indichiamo con [x] il più grande intero che non supera x.

Ad esempio [1/2] = 0 mentre [-1/2] = -1.

Esempio 3.2. Per ogni A > 1 e $\beta \in \mathbb{R}$ si ha

$$\lim_{n \to \infty} n^{\beta} A^{-n} = 0$$

Infatti dalla monotonia dell'esponenziale si ha

$$n^{[\beta]} < n^{\beta} < n^{[\beta]+1}$$

Sicché poiché vale (visto a lezione con Esposito)

$$\lim_{n \to \infty} n^k A^{-n} = 0$$

per il teorema dei carabinieri si ottiene

$$\lim_{n \to \infty} n^{\beta} A^{-n} = 0$$

Esempio 3.3. Per ogni $\alpha \in \mathbb{R}$ si ha

$$\lim_{n\to\infty} \sqrt[n]{n^\alpha} = 1$$

Infatti ciò è vero per α intero (visto a lezione con Esposito). In generale si ha

$$\sqrt[n]{n^{[\alpha]}} \le \sqrt[n]{n^{\alpha}} \le \sqrt[n]{n^{[\alpha]+1}}$$

Quindi utilizzando nuovamente il teorema dei carabinieri si ottiene la tesi.