AC1 – Tutorato 6

Paolo Tranquilli

Venerdì 22 Aprile

1. Mostrare che se $f:\mathbb{C}\to\mathbb{C}$ è una funzione intera e si ha che per |z| abbastanza grande ho

$$|f(z)| \le C |z|^k$$

allora f(z) è un polinomio con grado al massimo k.

- 2. Mostrare che se f è una funzione intera non costante allora $f(\mathbb{C})$ è denso in \mathbb{C} .
- 3. Dati U e V aperti di \mathbb{C} si dice isomorfismo di U e V una funzione olomorfa $f:U\to V$ invertibile e con inversa olomorfa. Se tale funzione esiste allora U e V si dicono isomorfi. Se U=V l'isomorfismo si dice automorfismo, e Aut (U) denota l'insieme degli automorfismi di U. Sia D il disco aperto di raggio unitario e centro 0.
 - (a) Determinare se \mathbb{C} è isomorfo o meno a D.
 - (b) Verificare velocemente che Aut (U) è un gruppo rispetto all'operazione di composizione e che un isomorfismo $f: U \to V$ induce un isomorfismo di gruppi $\tilde{f}: \operatorname{Aut}(U) \to \operatorname{Aut}(V)$.
 - (c) Mostrare che $r_{\theta}(z) := e^{i\theta}z$ con $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ e $g_{\alpha} := \frac{\alpha z}{1 \overline{\alpha}z}$ con $|\alpha| < 1$ sono automorfismi di D.
 - (d) Dimostrare il

Lemma 1 (Schwartz) Sia $f: D \to D$ una funzione olomorfa tale che f(0) = 0. Allora

- $\forall z \in D : |f(z)| \le |z|$;
- Se esiste $z_0 \neq 0$ con $|f(z_0)| = |z_0|$, allora f è una rotazione attorno all'origine, ovvero esiste α di modulo 1 tale che $f(z) = \alpha z$.

(suggerimento: considerare g(z) = f(z)/z)

- (e) Concludere che f è un automorfismo di D se e solo se $f = r_{\theta} \circ g_{\alpha}$ per $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ e $|\alpha| < 1$ unici. Mostrare anche che se f fissa l'origine allora è una rotazione.
- 4. Sia $f:D\to\mathbb{C}$ olomorfa. Mostrare che se |f(z)|<1 e f fissa due punti allora f è l'identità.