UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica GEOMETRIA 3

Prova scritta del 15-7-2004 - a.a. 2003-2004

- 1. (a) Si definiscano le nozioni di densità, interno, esterno e fontiera dei sottoinsiemi di uno spazio topologico;
- (b) Si enunci il risultato che caratterizza, in quattro versioni differenti, la densità;
- (c) si dimostri tale risultato.
- **2.** Si consideri il seguente sottospazio di \mathbb{R}^2 :

$$\mathcal{S} = ([0,1] \times (0,1]) \cup ([-1,0] \times [-1,0)) \cup (\{1,-1\} \times [-1,1]) \cup \left\{ (\frac{1}{2},-\frac{1}{2}), \ (-\frac{1}{2},\frac{1}{2}) \right\}.$$

(a) Determinare

$$\overline{\mathcal{S}}$$
, $D(\mathcal{S})$, $Fr(Int(\mathcal{S}))$;

- (b) per ciascuno degli insiemi in (a) calcolare le componenti connesse;
- (c) sia $\mathcal{A} = \operatorname{Int}(\mathcal{S})$. Consideriamo la seguente relazione di equivalenza su \mathcal{A} :

$$(x_1, y_1) \sim (x_2, y_2)$$
 se e solo se $(x_1, y_1) = \pm (x_2, y_2)$.

Determinare un omeomorfismo esplicito tra \mathcal{A}/\sim e $D_1((0,0))$.

3. Sia d una distanza su \mathbb{R}^2 e si considerino i seguenti sottospazi di (\mathbb{R}^2, d) :

$$A = \{(x, x/n) \in \mathbb{R}^2, x \in \mathbb{R}, n \in \mathbb{Z} - \{0\}\}, B = \{(x, n) \in \mathbb{R}^2, x \in \mathbb{R}, n \in \mathbb{Z}\},$$

- e l'applicazione $f: B \to A$ definita da f(x, n) = (x, x/n).
- (a) Se d è la distanza euclidea, si dimostri che f è continua.
- (b) Se d è la distanza euclidea, f è aperta?
- (c) Se d è una distanza qualsiasi, f è continua?
- 4. (a) Si definiscano le nozioni di connessione e connessione per archi negli spazi topologici;
- (b) si enuncino i teoremi che relazionano tali nozioni con le stesse negli spazi prodotto;
- (c) si dimostrino tali teoremi.
- **5.** Si consideri \mathbb{R} come spazio topologico con la topologia delle semirette sinistre aperte $(-\infty, a), a \in \mathbb{R}$, ed i sottoinsiemi in (a), (b), (c) con la topologia indotta. Vero o falso:
- (a) $(-\infty, a)$ è compatto;

- (b) $(-\infty, a]$ è compatto;
- (c) $(-\infty, a] \cap \mathbb{Q}$ è compatto.
- **6.** Siano $A \in B$ due sottospazi di \mathbb{R}^n con la topologia euclidea e si definisca $A+B=\{a+b,a\in A,b\in B\}.$
- (a) Si dimostri che se A e B sono compatti allora A+B è compatto;
- (b) Si dimostri che se A e B sono connessi per archi allora A+B è connesso per archi;
- (c) se A e B sono sconnessi allora A+B è sconnesso?